Obsolete IDL
Features

IDL Version 6.3

April 2006 Edition
Copyright © RSI
All Rights Reserved

Restricted Rights Notice

The IDL®, ION Scri pt™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. RS reserves
the right to make changes to this document at any time and without notice.

Limitation of Warranty

RSI makes no warranties, either express or implied, asto any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantahility, or
fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or
any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, RSI grantsyou alimited, nontransferable license to repro-
duce this particular document provided such copies are for your use only and are not sold or dis-
tributed to third parties. All such copies must contain the title page and this notice pagein their
entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of I TT Industries, registered in the United
States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ isatrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ s atrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDFS5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies I ncorporated.
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1
Obsolete Feature OVEIVIEWccoivuiiiiiiiieeeeie et e eeea e eens 9
Backwards Compatibilitycccccoveiieiieiie e see e s e e sreesreenre e 10
IDL INterNal ROULINESooeoviiieiiicete ettt sttt e sttt ste e steesbe e sbeebeebeenteenneenns 10
ROULINES WIHTEEN TN IDL ..ottt ettt et e s 10
Detecting Use of ODSOIELE FEAIUIESccceiviieiieie ettt e e e 11
Documentation for Older Obsolete ROULINEScoovveiiiecieecee e 12
Chapter 2
ODbsolete ROULINES ..couniiiii e 13
DDE ROULINESoeeiutieiiee ettt ettt ettt e e et e e tee e te e e sae e e s abe e sabeesabeesnbeesabeesbeseebeeenseeennes 14
DELETE SYMBOL ..ottt ettt sate s st s e st e e s te e et e e saeeenneennes 15
)] = I R 16
(D] L@ I Y/ 5 R 17
DO _APPLE _SCRIPT ..ottt st sttt st s been e nenas 18
L (O O 20

Obsolete IDL Features 3

FINDFILE .ottt sttt bbb e e 21
L I | PSP SSRR 23
GET_SYMBOL ...ttt sttt sttt b b b 25
HANDLE _CREATE ...ttt sttt sae et e e e st seenens 26
HANDLE _FREE ...ttt st bt 29
[L NN I N S 30
HANDLE _MOVE ...ttt sttt b st 32
HANDLE VALUE ..ottt st sttt s 34
HDF_DFSD_ADDDATA ..ottt sttt st e e b e 36
HDF_DFSD _DIMGET ...oooiiiiesieieese ettt st se s st ssesaeses e ssessenenns 38
HDF_DFSD_DIMSET ..ottt sttt sttt 39
HDF_DFSD _ENDSLICEooiieieeeesiesieee ettt nae e sse e nens 41
HDF_DFSD_GETDATA ettt sttt sttt e s 42
HDF_DFSD_GETINFOooiiiieieese ettt ste e et ne e ssessensesesnessessenenns 43
HDF_DFSD_GETSLICE ...ttt sttt s s 45
HDF_DFSD _PUTSLICEooiiieieesesesie ettt s na e s e nens 47
HDF_DFSD_READREF ...ttt sttt s 48
HDF_DFSD_SETINFO ...octiiieieieese st s st ste e sessesae s e sessessessesesssssessensnns 49
HDF_DFSD_STARTSLICE ...ttt s 53
HDF_VD_GETNEXT ..ottt sttt sse s e enessessensnns 55
INP, INPW, QUTP, OQUTPW ..ottt 56
[Y oo 57
LIVE_CONTOUR ..ottt sttt sttt b e 58
LIVE_CONTROL ...ooitiieieieiesiesieee e s stesee s te e ae e e ssestesseseesessessessssessessessessesessessessensens 67
LIVE_DESTROY ..ottt sttt sttt sttt b st 70
[Y . © | SR 72
LIVE_IMAGE ...ttt sttt bttt bbb e 75
LIVE_INFO oottt sttt ettt et sesae s e e se st e s se e eneenenseseensns 82
LIVE_LINE ettt st sttt sttt bt 94
[Y I A 5 S 98
LIVE_OPLOT ittt ettt sttt sttt b ettt nn e 99
[Y I 2 OSSR 105
LIVE_PRINT ottt sttt sttt bbbt 113
LIVE_RECT oottt sttt sttt st et e e s s te s eseesensesaeneeneesenseneenen 115
LIVE_STYLE ottt bbbttt e 119
LIVE_SURFACEoooeeee ettt sttt sa s s ae s esessessessenaesessessesennen 127

Contents Obsolete IDL Features

LIVE_TEXT ottt sttt sttt sttt bbb 136
0 SRR 140
MSG_CAT_CLOSE ...ttt sttt sttt 141
MSG_CAT_COMPILEooiiieeeee sttt st s sne e e 142
MSG_CAT_OPEN ...ttt st b bbbt a e 144
ONLINE_HELP_PDF _INDEX ...ocotitrtsteeeisineseneseseseeee e seeseeseesesse e seenessessessesennens 146
PICKFILE <ottt sttt st a e 150
POLY FITW ettt sttt sttt et sae st e s sesaesee e e e esesansenens 151
REWIND ..ottt sttt sttt bttt a e 153
RIEMAINN <.ttt e e e ese st e e e e esessenseseeneesensensnnennens 154
RSTRPOS ...ttt e et b e b bt be b e e s 159
SET_SYMBOL ...ttt ettt seste e e e e e nsessnnaenens 161
SETLOG ..ottt sttt st b et b e b 162
SETUP _KEY'S ettt sttt st ene st sae e eseesesteseeneenensessnnennens 164
SIZE EXECULIVE COMIMANGovineeiiriiriirieesiesie et s se e s be s 167
S TSRS 169
SLICER ..t bbbt e bbb b e 170
STR SEP ettt sttt et et e neeReeae e e e e neerensenaenens 176
TAPRD .o ettt et b e b e e 178
LI L SR 179
TIFF_DUMP ettt sttt 180
QLI =7 I SR 181
TIFF _WRITE ..ottt sttt eb et 183
LI L R 186
VAX FLOAT ittt bbbttt b ettt b ettt b bt ne e 188
WEOF ...ttt sttt sttt s e b e s e et et e st ebeseese e e se e s e s ae e eneenenreneeneens 190
WIDED ...ttt bbb bbbt bbbt b b 191
WIDGET _MESSAGE ..ottt e et e e s s esessesseneesenns 192
Chapter 3
ODbSolete ODJECES .ooiiiiieii i 193
T = oo 0o = G S 194
IDLTfLanguageCat PrOPEItIEScc.cveiririerieiresie e 195
IDLffLaNgUageCaL:: 1SV alidcccoeiee e 196
IDLTFLaNQUagECAL:IQUETYc.couirieeeieeieriesieneee et see et sre s 197
IDLffLanguageCat::SEtCaalOgcccceiieeieereereerieereesie s seeeee e seesee e sreeseeens 198

Obsolete IDL Features Contents

Chapter 4

Routines with Obsolete Arguments or Keywordsccccceeeeeeeeeeennn. 199
BYTEORDER ...ttt sttt sttt s be e ne e e 201
(O I G I =] A I 202
DEVICE ..ottt e sttt sa bbb st n b be e be e ne e eres 203
[O O I I 204
DOC _LIBRARY ettt sttt st st st st st st snbe e s be e e 205
[G 7 A O I I 1 206
o | I PSPPI 207
IDLOIMPEG:ISAVE ...ttt ettt e st e s sae e sae e sbe e sae e e 208
T T Io Yo 1 0 1= 1 g TS 209
IDLITSYS CREATETOOLooiiiiee ettt rtee sttt et enees 210
IDLItTOOl::REQISLEIOPErGLIONccvecveeeeeiesie e eeeste et ettt e e sreens 211
I AVATS V= 117z () £ 10 AN (o [212
IDLitVisualization:: GetCenterROLaIONccveireriirieirese e 213
IDLitVisualization::GEPrOPEITYeeeeeeereeeeeeee st e et e e ens 214
IV OIUME .ot b ettt b e b e et se b b 215
I = I o] = €1 216
I N PSR 217
I N S 1Y N 218
I Y N N RSP 219
I 220
N S = 5 PSPPI 221
ST AN] 222
ONLINE_HELP .ottt s st st st st s s be e s 223
L ! 224
POLY _FIT oeeeeeeeeeeeeeeee e s ee e s e ss e se e es et sseess e seseseeeseseseseseseseeesesssesnsenenes 230
L LN LA 1 NN N N 231
L I I 1 PRSPPI 232
AN B T = A 5 233
READU .ottt st st sa e e st bbb n e b re e e ne e eres 234
] T 235
SAVE ettt e bRt ne e R e ne s 237
S T 238
1YY L T SRR 240
WIDGET _BASE ..ottt e et e e s e e a e e s nee e s nte e ste e eneeenneennneas 241

Contents Obsolete IDL Features

WIDGET_CONTROL ..ottt sttt 242
WIDGET_TREE ...o.tiiieici ettt sttt st st e et sse s nsesseneeneenenns 243
WRITE_TIFF oottt sttt 244
LT L = S 245
XIMAINAGER ..ottt sttt bbbt 246
Chapter 5
Obsoleted GraphiCs DEVICESuuuiiiiiiiiiiiiiiieeeeeee e 247
TRELIDEVICE ..ttt ettt ettt ae st s te e aee s ae e satesaeesheesbeesaeesaeesaeesneestenns 248
LIDIIVEr SEFENGINS ..ot e see s 249
LI Driver LIMItAtiONSccccviiieiie et see sttt ettt sne e 249
[o (= 1 o RS 250
The MaCiNtOSN DEVICEccveciectece ettt ettt st s esre e saeesbaesreens 251
Chapter 6
Obsolete Remote Procedure Callsoooovvviiiiiiiiiiiiiiiieeeeeeeeeeeeeiiiinns 253
USING IDL @S 8N RPC SEIVENcoiiieieieieie ettt e e seesreeneenee e 255
The IDL RPC DITECLONY ..c.viiviieieeeieciestieiesie st ste st e st st re et be e e ense s 255
RUNNING IDL iN SEIVEr MOOEcoeeeeieeeee e 255
Creating the IDL RPC LiBrarycccoivieieiise ettt 255
Linking your CHENnt Programccoceeeieecere e eee e e 256
The IDL RPC LIBIaryccoceeeie ettt sttt sttt 257
Free Idl_Varialle ..o e nree 258
Lo S A [| Y= = o] 1= TS 259
o IS = VL= G 110 = oY/ S 261
LIRS = L/ S SRS 262
=0 TS (= g o | ok 1= o | USRS 263
1S1S 1o Ko ot 01071 0= o S 264
LS Lo | 100 USSR 265
SEL 1Al _Variable ..o s 266
S S 0O VL= 0101 1 R 268
(U= o TES (= g o o L= o | S 269
The Varinfo t SLIUCLUIEecciecceece e ettt e e e e snee 270
Variable Creation FUNCLIONS ... s 270
A 7= ST 07 (SR 271
V_MAKE _COMPIEX ..uviiiiie ettt e st e e e st s teer e e be st e s reeneenene e 272
AV 7= ST o (o0 1 o] = S 273

Obsolete IDL Features Contents

V_MAKE OUDIE ...ttt s aesresreenaenaesresneas 274
(VA 0= 2GS 1 o 275
A 107= G | RSO SU 276
AV 107= ST L] o USRS 277
AV 7= IS 1 0o USRS 278
V_FH_BITAY ottt eentesaeeneenaeenenneas 279
More Variable Manipulation MaCrOSccceveiieeieeiesese e 280
Notes on Variable Creation and Memory Managementccccoveeeeeerereneecenenseeseenes 282

FregiNg RESOUICESc.eooiiiiiiiiceete sttt sttt te et sa e st reese e e aesre e e e nenresne s 282

Creating a Statically-AllOCated ATAYccooceeeeeeiere e 282

Allocating SPace fOr SLHNGSovv it 283
L O = 1 o) =SS 284

Contents Obsolete IDL Features

Chapter 1

Obsolete Feature

Overview

This chapter discusses the following topics:

Backwards Compatibility
Detecting Use of Obsolete Features

Obsolete IDL Features

10 Chapter 1: Obsolete Feature Overview

Backwards Compatibility

RSI strongly recommends that you not use obsol ete routines when writing new DL

code. AsIDL continuesto evolve, the likelihood that obsol ete routines will no longer
function as expected increases. While we will continue to make every effort to ensure
that obsol ete routines shipped with IDL function, in asmall number of casesthis may

not be possible.

IDL Internal Routines

Routines that are built into the IDL executable—routines not written in the IDL
language—will either continue to be included in the executable until the scheduled
removal release or will be re-implemented in the IDL language. In the latter case,
obsolete routines may run slower than the original version. Note that obsolete
routines that have been re-implemented in the IDL language may also be scheduled

for eventual removal.

Routines Written in IDL

Routines written in the IDL language (. pr o files) are contained in the obsolete
subdirectory of the lib directory of the IDL distribution. Aslong as a given obsolete
routineisincluded in this subdirectory, it will continue to function as aways.

Backwards Compatibility Obsolete IDL Features

Chapter 1: Obsolete Feature Overview 11

Detecting Use of Obsolete Features

You can search for usage of obsolete routines, system variables, and syntax by setting
the fields of the 'WARN system variable. Setting 'WARN causes IDL to print
informational messages to the command log or console window when it encounters

references to obsolete features. See“!'WARN” in the IDL Reference Guide manual for
details.

Obsolete IDL Features Detecting Use of Obsolete Features

12 Chapter 1: Obsolete Feature Overview

Documentation for Older Obsolete Routines

Routines that became obsoletein IDL version 4.0 or earlier are not documented in
this book or in the IDL Online Help. However, if the routine is written in the IDL
language, you can inspect the documentation header of the. pr o file, or usethe
DOC_LIBRARY routine. The. pr o files for obsolete routines are located in the
obsol et e subdirectory of thel i b directory of the IDL distribution.

Documentation for Older Obsolete Routines Obsolete IDL Features

Chapter 2
Obsolete Routines

This chapter contains complete documentation for obsoleted IDL routines. New IDL
code should not use these routines. For alist of the routines that replace each of these
obsolete routines, see Appendix J, “ Obsolete Features’ in the IDL Reference Guide
manual.

Obsolete IDL Features 13

14 Chapter 2: Obsolete Routines

DDE Routines

These routines are obsolete and should not be used in new IDL code.

Windows-Only Routines for Dynamic Data Exchange
(DDE)

IDL for Windows supports DDE client capability for cold DDE links. The relevant
system calls are documented bel ow:

Result = DDE_GETSERVERS()

This function returns an array of service names for the currently-available DDE
servers.

Result = DDE_GETTOPICS(server)

This function returns the topics list for the specified server. The server argument isa
scalar string containing the name of the desired DDE server.

Result = DDE_GETITEMS(server)

This function returns the items list for the specified server. The server argument isa
scalar string containing the name of the desired DDE server.

Result = DDE_REQUEST((server, topic, item)

This function returns the requested data in string format. The server, topic, and item
arguments must be scalar strings.

DDE_EXECUTE, server, topic, command

This procedure causes the DDE server to execute the command for the specified
topic. The server, topic, and command arguments must be scalar strings.

DDE Routines Obsolete IDL Features

Chapter 2: Obsolete Routines 15

DELETE_SYMBOL

The DELETE_SYMBOL procedure deletesa DCL (Digital Command Language)
interpreter symbol for the current process.

Note
This procedureis available on VMS only.

Syntax
DELETE_SYMBOL, Name[, TYPE={1]|2}]
Arguments

Name

A scalar string containing the name of the symbol to be del eted.
Keywords
TYPE

Indicates the table from which Name will be deleted. Set TY PE to 1 to specify the
local symbol table. Set TY PE to 2 to specify the global symbol table. The default isto
search the local table.

Obsolete IDL Features DELETE_SYMBOL

16 Chapter 2: Obsolete Routines

DELLOG

The DELLOG procedure deletes aVMS logical name.

Note
This procedureis available on VMS only.

Syntax
DELLOG, Lognam [, TABLE=string]
Arguments

Lognam

A scalar string containing the name of the logical to be deleted.
Keywords
TABLE

A scalar string giving the name of the logical table from which to delete Lognam. If
TABLE is not specified, LNM$PROCESS_TABLE is used.

DELLOG Obsolete IDL Features

Chapter 2: Obsolete Routines 17

DEMO_MODE

This routine is obsolete and should not be used in new IDL code.

The DEMO_MODE function returns True if IDL is running in the timed demo mode
(i.e., alicense manager is not running). Calling this function causesa FLUSH, -1
command to be issued.

Syntax

Result = DEMO_MODE()

Obsolete IDL Features DEMO_MODE

18 Chapter 2: Obsolete Routines

DO _APPLE SCRIPT

This routine is obsolete and should not be used in new IDL code.

The DO_APPLE_SCRIPT procedure compiles and executes an AppleScript script,
possibly returning aresult. DO_APPLE_SCRIPT isonly availablein IDL for
Macintosh.

Syntax
DO _APPLE_SCRIPT, Script [, /AG_STRING] [, RESULT=variable]
Arguments
Script
A string or array of strings to be compiled and executed by AppleScript.
Keywords
AS_STRING

Set this keyword to cause the result to be returned as a decompiled string.
Decompiled strings have the same format as the “ The Result” window of Apple's
Script Editor.

RESULT

Set this keyword equal to a named variable that will contain the results of the script.
Example

Suppose you wish to retrieve arange of cell datafrom aMicrosoft Excel spreadshest.
Thefollowing AppleScript script and command retrieve thefirst through fifth rows of
the first two columns of a spreadsheet titled “Worksheet 1”7, storing the result in the

IDL variable A:
script = ["tell application "Mcrosoft Excel"', $
'get Value of Range "RICL: R5C2" of Worksheet 1', $
"end tell"']

DO APPLE_SCRI PT, script, RESULT = a

Similarly, the following lines would copy the contents of the IDL variable A to a
range within the spreadsheet:

DO_APPLE_SCRIPT Obsolete IDL Features

Chapter 2: Obsolete Routines 19

A=1[1, 2, 3, 4, 5]

script = ["tell application "IDL" to copy variable "A"", $
'into avariable' , $
"tell application "Excel" to copy avVariable to', $
"val ue of range "RLCl: R5C1" of worksheet 1']

DO _APPLE_SCRI PT, scri pt

Obsolete IDL Features DO_APPLE_SCRIPT

20 Chapter 2: Obsolete Routines

ERRORF

This routine is obsolete and should not be used in new IDL code.

The ERRORF function returns the value of the error function:
X

2
erf(x) = 2/J&je dit
0

The result is double-precision if the argument is double-precision. If the argument is
floating-point, the result is floating-point. The result always has the same structure as
X. The ERRORF function does not work with complex arguments.

Syntax
Result = ERRORF(X)
Arguments
X

The expression for which the error function is to be eval uated.
Example

To find the error function of 0.4 and print the result, enter:
PRI NT, ERRORF(O0. 4)

IDL prints:
0.428392

ERRORF Obsolete IDL Features

Chapter 2: Obsolete Routines 21

FINDFILE

This routine is obsolete and should not be used in new IDL code.
The FINDFILE function retrieves alist of files that match File_Specification.

Note

RSI strongly recommends the use of the FILE_SEARCH function, included in IDL
5.5 and later, in place of the FINDFILE function. FILE_SEARCH offers many
advantages over FINDFILE, including cross-platform consistency in wildcard
syntax, uniform presentation of results, filtering by file attributes, and, under UNIX,
freedom from performance and number of file limitations encountered by
FINDFILE.

Platform specific differences are described below:

Syntax

Under UNIX, to include al thefilesin any subdirectories, use the * wildcard
character in the File_Specification, such asin

result = FINDFILE(' /path/*").If File_Specification containsonly a
directory, with no file information, only filesin that directory are returned.

Under Windows, FINDFILE appends a“\” character to the end of the returned
file nameif thefileisadirectory. To refer to all the filesin a specific directory
only,useresult = FINDFILE('\path*").

Result = FINDFILE(File_Specification [, COUNT=variable])

Return Value

All matched filenames are returned in a string array, one file name per array element.
If no files exist with names matching the File_Specification, anull scalar string is
returned instead of a string array. FINDFILE returns the full path only if the path
itself is specified in File_Specification. See the “Examples’ section below for details.

Arguments

File_Specification

A scalar string used to find files. The string can contain any valid command-
interpreter wildcard characters. If File_Specification contains path information, that

Obsolete IDL Features FINDFILE

22 Chapter 2: Obsolete Routines

path information isincluded in the returned value. If File_Specification is omitted,
the names of all filesin the current directory are returned.

Keywords

COUNT

A named variable into which the number of filesfound isplaced. If nofilesarefound,
avalue of O isreturned.

Examples

To print the file names of all the UNIX fileswith . dat extensionsin the current
directory, use the command:

PRI NT, FI NDFI LE(' *. dat")

To print the full path namesof all . pr o filesintheIDL | i b directory that begin with
the letter “x”, use the command:

PRI NT, FINDFILE('/usr/local/rsi/idl/lib/x*.pro')

To print the path names of all . pr o filesinthepr of i | es subdirectory of the current
directory (arelative path), use the command:

PRI NT, FI NDFI LE(' profiles/*.pro')

Note that the values returned are (like the File_Specification) relative path names.
Use caution when comparing values against this type of relative path specification.

Version History

Introduced: Original

FINDFILE Obsolete IDL Features

Chapter 2: Obsolete Routines 23

GETHELP

This routine is obsolete and should not be used in new IDL code.

The GETHELP function returns information on variables defined at the program
level from which GETHELP s called. The function builds astring array that contains
information that follows the format used by the IDL HEL P command.

When called without an argument, GETHELP returns a string array that normally
contains variable data that is in the same format as used by the IDL HELP procedure.
Thevariablesin thislist are those defined for the routine (or program level) that
called GETHELP If there are no variables defined, or the specified variable does not
exist, GETHELP returns a null string. Other information can be obtained by setting
keywords.

Syntax
Result = GETHELP([Variable])
Arguments

Variable

A scalar string that contains the name of the variable from which to get information.
If thisargument is omitted, GETHEL P returns an array of strings where each element
contains information on a separate variable, one element for each defined variable.

Keywords

FULLSTRING

Normally astring that islonger than 45 charsis truncated and followed by “..." just
like the HEL P command. Setting this keyword will cause the full string to be
returned.

FUNCTIONS

Setting this keyword will cause the function to return all current IDL compiled
functions.

Obsolete IDL Features GETHELP

24

Chapter 2: Obsolete Routines

ONELINE

If avariable name is greater than 15 charactersit is usually returned as 2 two
elements of the output array (Variable namein 1st element, variable info in the 2nd
element). Setting this keyword will put al the information in one string, separating
the name and data with a space.

PROCEDURES

Setting this keyword will cause the function to return all current IDL compiled
procedures.

SYS_PROCS

Setting this keyword will cause the function to return the names of al IDL system
(built-in) procedures.

SYS_FUNCS

Setting this keyword will cause the function to return the names of al IDL system
(built-in) functions.

Note
RESTRICTIONS: Dueto the difficultiesin determining if avariableis of type
associate, the following conditions will result in the variable being listed as a
structure. These conditions are:

e Associate record typeis structure.
» Associated fileis opened for update (openu).
e Associatefileis not empty.

Another difference between this routine and the IDL help command isthat if a

variable isin a common block, the common block nameis not listed next to the
variable name. Currently thereis no method available to get the common block
names used in aroutine.

Example

GETHELP

To obtain alisting in ahelp format of the variables contained in the current routine
you would make the following call:

HelpData = GetHelp()
The variable HelpData would be a string array containing the requested information.

Obsolete IDL Features

Chapter 2: Obsolete Routines 25

GET_SYMBOL

This routine is obsolete and should not be used in new IDL code.

The GET_SYMBOL function returns the value of aVMS DCL (Digital Command
Language) interpreter symbol as a scalar string. If the symbol is undefined, the null
string is returned.

Note
This procedure is available on VMS only.

Syntax
Result = GET_SYMBOL(Name[, TYPE={1]|2}])
Arguments

Name

A scalar string containing the name of the symbol to be translated.
Keywords

TYPE

The table from which Name is transated. Set TY PE to 1 to specify the local symbol
table. A value of 2 specifiesthe global symbol table. The default isto search the local
table.

Obsolete IDL Features GET_SYMBOL

26 Chapter 2: Obsolete Routines

HANDLE_CREATE

This routine is obsolete and should not be used in new IDL code.

The HANDLE CREATE function creates anew handle. A “handle” isa
dynamically-allocated variable that isidentified by aunique integer value known as a
“handle ID”. Handles can have avalue, of any IDL data type and organization,
associated with them. This function returns the handle ID of the newly-created
handle.

Because handles are dynamic, they can be used to create complex data structures.
They are also global in scope, but do not suffer from the limitations of COMMON
blocks. That is, handles are available to al program units at al times. (Remember,
however, that IDL variables containing handle IDs are not global in scope and must
be declared in a COMMON block if you want to share them between program units.)

Handle Terminology
The following terms are used to describe handles in the documentation for this
function and other handle-related routines:
* HandlelID: The unique integer identifier associated with a handle.

« Handlevaue: Dataof any IDL type and organization associated with a handle.

e Top-level handle: A handle at the top of a handle hierarchy. A top-level handle
can have children, but does not have a parent.

e Parents, children, and siblings: These terms describe the relationship between
handles in ahandle hierarchy. When anew handle is created, it can be the start
of anew handle hierarchy (atop-level handl€) or it can belong to the level of a
handle hierarchy below an existing handle. A handle created in thisway is said
to be achild of the specified parent. Parents can have any number of children.
All handles that share the same parent are said to be siblings.

Syntax

Result = HANDLE_CREATE([ID])

HANDLE_CREATE Obsolete IDL Features

Chapter 2: Obsolete Routines 27

Arguments

ID

If thisargument is present, it specifiesthe handle ID relative to which the new handle
is created. Normally, the new handle becomes the last child of the parent handle
specified by 1D. However, this behavior can be changed by setting the
FIRST_CHILD or SIBLING keywords.

Omit this argument to create a new top-level handle without a parent.
Keywords

FIRST_CHILD

Set this keyword to create the new handle as thefirst child of the handle specified by
ID. Any existing children of ID become later siblings of the new first child (i.e., the
existing first child becomes the second child, the second child becomes the third
child, etc.).

NO_COPY

Usually, when the VALUE keyword is used, the source variable memory is copied to
the handle value. If the NO_COPY keyword is set, the value data is taken away from
the source variable and attached directly to the destination. This feature can be used
to move data very efficiently. However, it has the side effect of causing the source
variable to become undefined.

SIBLING

Set this keyword to create the new handle as the sibling handle immediately
following ID. Any other siblings currently following ID become later siblings of the
new handle. Note that you cannot create a handle that is a sibling of atop-level
handle.

VALUE

The value to be assigned to the handle.

Every handle can contain a user-specified value of any data type and organization.
Thisvalueisnot used by the handle in any way, but exists entirely for the
convenience of the IDL programmer. Use this keyword to set the handle value when
the handleisfirst created.

If the VALUE keyword is not specified, the handle'sinitial value is undefined.

Obsolete IDL Features HANDLE_CREATE

28 Chapter 2: Obsolete Routines

Handle values can be retrieved using the HANDLE_VALUE procedure.
Examples

The following commands create a top-level handle with 3 child handles. Each handle
is assigned a different string value:

;Create top-level handle without an initial handle val ue:

top = HANDLE_CREATE()

;Create first child of the top-1evel handle:

first = HANDLE _CREATE(top, VALUE='First child")

; Create second child of the top-Ilevel handl e:

second = HANDLE CREATE(top, VALUE=' Second child’)

;Create a new sibling between first and second.

;This handle is also a child of the top-level handle:

third = HANDLE CREATE(first, VALUE=" Another child’, /SIBLING

HANDLE_CREATE Obsolete IDL Features

Chapter 2: Obsolete Routines 29

HANDLE_FREE

This routine is obsolete and should not be used in new IDL code.

The HANDLE FREE procedure frees an existing handle, along with any dynamic
memory currently being used by its value. Any child handles associated with ID are
also freed.
Syntax
HANDLE_FREE, ID
Arguments
ID

The ID of the handle to be freed. Once the handleis freed, further use of it isinvalid
and causes an error to be issued.

Example

To free al memory associated with the top-level handle top, and al its children, use
the command:

HANDLE_FREE, top

Obsolete IDL Features HANDLE_FREE

30 Chapter 2: Obsolete Routines

HANDLE_INFO

This routine is obsolete and should not be used in new IDL code.

The HANDLE _INFO function returns information about handle validity and
connectivity. By default, it returns True if the specified handle ID isvalid. Keywords
can be set to return other types of information.

Syntax
Result = HANDLE_INFO(ID)
Arguments

ID

The ID of the handlefor which information is desired. This argument can be scalar or
array an array of IDs. The result of HANDLE_INFO has the same structure as ID,
and each element gives the desired information for the corresponding element of ID.

Keywords

FIRST_CHILD

Set this keyword to return the handle ID of the first child of the specified handle. If
the handle has no children, O is returned.

NUM_CHILDREN
Set this keyword to return the number of children related to ID.
PARENT

Set this keyword to return the handle ID of the parent of the specified handle. If the
specified handle is atop-level handle (i.e., it has no parent), O is returned.

SIBLING

Set this keyword to return the handle ID of the sibling handle following ID. If ID has
no later siblings, or if ID isatop-level handle, O is returned.

HANDLE_INFO Obsolete IDL Features

Chapter 2: Obsolete Routines 31

VALID_ID

Set this keyword to return 1 if 1D represents a currently valid handle. Otherwise, zero
isreturned. Thisisthe default action for HANDLE_INFO if no other keywords are
specified.

Examples

The following commands demonstrate a number of different uses of
HANDLE_INFO:

;Print a nmessage if handlel is a valid handle |ID.

I F HANDLE | NFQ(handl e1l) THEN PRI NT, 'Valid handle.'
;Retrieve the handle ID of the first child of top.
handl e = HANDLE | NFQ(t op, /FI RST_CHI LD)

;Retrieve the handle ID of the next sibling of handlel.
next = HANDLE | NFQ(handl e1, /Sl BLI NG

Obsolete IDL Features HANDLE_INFO

32

HANDLE_MOVE

Chapter 2: Obsolete Routines

This routine is obsolete and should not be used in new IDL code.

The HANDLE MOVE procedure moves a handle (specified by Move ID) to anew
location. This new position is specified relative to Static_ID.

Syntax
HANDLE_MOVE, Satic_ID, Move ID
Arguments
Static_ID

The handle ID relative to which the handle specified by Move_ID is moved. By
default, Move ID becomesthelast child of Static ID. This behavior can be changed
by specifying one of the keywords described below.

If Static_ID isset to 0, Move ID becomes atop level handle without any parent.
Static_ID cannot be a child of Move_ID.

Move_ID
The ID of the handle to be moved.

Keywords

FIRST_CHILD

Set this keyword to make Move_|D thefirst child of Static_ID. Any existing children
of Static_ID become later siblings of the new first child (i.e., the existing first child
becomes the second child, the second child becomes the third child, etc.).

SIBLING

Set this keyword to make Move_ID the sibling handle immediately following
Static_ID. Any siblings currently following Static_ID become later siblings of the

new handle. Note that you cannot move a handle such that is becomes a sibling of a
top-level handle.

HANDLE_MOVE Obsolete IDL Features

Chapter 2: Obsolete Routines

Example

; Create top-level handle:
top = HANDLE_CREATE()
Create first child of top:
chil dl = HANDLE CREATE(t op)
; Create second child of top:
chil d2 = HANDLE_ CREATE(t op)
; Move the first child to be the last child of top:
HANDLE MOVE, top, childl

Obsolete IDL Features

33

HANDLE_MOVE

34 Chapter 2: Obsolete Routines

HANDLE_VALUE

This routine is obsolete and should not be used in new IDL code.
The HANDLE VALUE procedure returns or sets the value of an existing handle.

Syntax

HANDLE_VALUE, ID, Value
Arguments

ID
A valid handleID.
Value

When using HANDLE_VALUE to return an existing handle value (the defaullt),
Vaue is anamed variable in which the value is returned.

When using HANDLE_VALUE to set ahandle value, Value is the new value. Note
that handle values can have any IDL data type and organization.

Keywords

NO_COPY

By default, HANDLE VALUE works by making a second copy of the source data.
Although this techniqueisfine for small data, it can have a significant memory cost
when the data being copied islarge.

If the NO_COPY keyword is set, HANDLE_VALUE works differently. Rather than
copy the source data, it takes the data away from the source and attaches it directly to
the destination. Thisfeature can be used to move datavery efficiently. However, it has
the side effect of causing the source variable to become undefined. On aretrieve
operation, the handle value becomes undefined. On a set operation, the variable
passed as Va ue becomes undefined.

SET

Set this keyword to assign Value as the new handle value. The default isto retrieve
the current handle value.

HANDLE_VALUE Obsolete IDL Features

Chapter 2: Obsolete Routines 35

Example

The following commands demonstrate the two different uses of HANDLE_VALUE:

. Retrieve the value of handl el into the variable current:
HANDLE VALUE, handl el, current

; Set the value of handlel to a 2-elenent integer vector:
HANDLE VALUE, handl el, [2, 3],/ SET

Obsolete IDL Features HANDLE_VALUE

36 Chapter 2: Obsolete Routines

HDF_DFSD_ADDDATA

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_ADDDATA procedure writes data, as well as al other information
set viacalsto HDF_DFSD_SETINFO and HDF_DFSD_DIMSET, to an HDFfile.

The Data array must have the same dimensions as the array in the file. The new SDS
is appended to thefile, unless the OVERWRITE keyword is set.

Syntax

HDF_DFSD_ADDDATA, Filename, Data [, /OVERWRITE]
[, SET_DIM=value{ must set either this or the DIMS keyword to
HDF_DFSD_SETINFO}] [, /SET_TYPE]

Arguments

Filename
A scalar string containing the name of the file to be written.
Data

An expression (typically an array) containing the datato write.
Keywords

OVERWRITE

Set this keyword to write Data as the first, and only, SDS in thefile. All previously-
written scientific data sets in the file are removed.

SET_DIM

Set this keyword to make the dimension information for the HDF file based upon the
dimensions of Data.

Note
You must set the number of dimensions in the HDF file, either by setting the
SET_DIM keyword or using the DIMS keyword to HDF_DFSD_SETINFO.

HDF_DFSD_ADDDATA Obsolete IDL Features

Chapter 2: Obsolete Routines 37

SET_TYPE

Set this keyword to make the data type of the current SDS based on the data type of
the Data argument.

Obsolete IDL Features HDF_DFSD_ADDDATA

38 Chapter 2: Obsolete Routines

HDF_DFSD DIMGET

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_DIMGET procedure retrieves information about the specified
dimension number of the current HDF file.

Syntax

HDF_DFSD_DIMGET, Dimension [, /FORMAT] [, /LABEL] [, SCALE=vector]
[, /UNIT]

Arguments

Dimension

The dimension number [0, 1, 2, ...] to get information about.
Keywords
FORMAT

Set this keyword to return the dimension format string.
LABEL

Set this keyword to return the dimension label string.
SCALE

Use this keyword to return scale information about the dimension. Set this keyword
to avector of values of the same type as the data.

UNIT

Set this keyword to return the dimension unit string.

HDF_DFSD_DIMGET Obsolete IDL Features

Chapter 2: Obsolete Routines 39

HDF_DFSD DIMSET

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_DIMSET procedure sets the label, unit, format, or scale of
dimensionsin an HDF. Note that the label, unit, and format of a dataset must be set
simultaneoudly.

Syntax

HDF_DFSD_DIMSET, Dimension [, FORMAT=string] [, LABEL=string]
[, SCALE=vector] [, UNIT=string]

Arguments

Dimension

The dimension number that the label, unit, format or scale apply to.
Keywords
FORMAT

A string for the dimension format. This string should be a standard IDL formatting
string.

LABEL
A string for the dimension label.
SCALE

A vector of values used to set the dimension scale.

UNIT

A string for the dimension units.
Example
Suppose that a stored dataset is a 20 by 100 by 50 element floating-point array of

values representing water content within the volume of acloud. Assume further that
each element in the 100-element dimension (the®Y” dimension) was sampled at 1/10

Obsolete IDL Features HDF_DFSD_DIMSET

40 Chapter 2: Obsolete Routines

mile increments. Appropriate labeling, formatting, unit, and scaling information for
the Y dimension can be set with the following command:

HDF_DFSD_DI MSET, 1, LABEL = 'Y Position', FORMAT = 'F8.2', $
UNIT = "M les', SCALE = 0. 1*FI NDGEN(100)

HDF_DFSD_DIMSET Obsolete IDL Features

Chapter 2: Obsolete Routines 41

HDF_DFSD ENDSLICE

This routine is obsolete and should not be used in new IDL code.
The HDF_DFSD_ENDSLICE procedure ends a sequence of calls started by

HDF_DFSD_STARTSLICE by closing the internal slice interface and synchronizing
thefile.

Syntax
HDF_DFSD_ENDSLICE

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.

Obsolete IDL Features HDF_DFSD_ENDSLICE

42 Chapter 2: Obsolete Routines

HDF_DFSD_GETDATA

This routine is obsolete and should not be used in new IDL code.
The HDF_DFSD_GETDATA procedure reads data from an HDF file.

Syntax

HDF_DFSD_GETDATA, Filename, Data [, /GET_DIMS{ Set only if you have not
caled HDF_DFSD_GETINFO with the DIMS keyword}] [, /GET_TY PE]

Arguments

Filename

A scalar string containing the name of the file to be read.
Data

A named variable in which the datais returned.
Keywords

GET_DIMS

Set this keyword to get dimension information for reading the data. This keyword
should only be used if one has not called HDF_DFSD_GETINFO with the DIMS
keyword

GET_TYPE
Set this keyword to get the data type for the current SDS.

HDF_DFSD_GETDATA Obsolete IDL Features

Chapter 2: Obsolete Routines 43

HDF_DFSD _GETINFO

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETINFO procedure retrieves information about the current HDF
file.

Note that calling HDF_DFSD_GETINFO with the DIMS or TY PE keywords may
ater which dataset is current. See “ Reading an Entire Scientific Dataset” and
“Getting Other Information About SDSs” in the NCSA HDF Calling Interfaces and
Utilities documentation.

Note that reading alabel, unit, format, or coordinate system string that has more than
256 characters can have unpredictabl e results.

Syntax

HDF_DFSD_GETINFO, Filename [, CALDATA=variable] [, /COORDSY S|
[, DIMS=variable] [, /FORMAT] [, /LABEL] [, /LASTREF] [, /NSDS]
[, /RANGE] [, TY PE=variable] [, /UNIT]

Arguments

Filename

A scalar string containing the name of the file to be read. A filenameis only needed
to determine SDS dimensions and/or the number of SDSsin afile.

Keywords

CALDATA

Set this keyword to a named variable which will contain the calibration data
associated with an SDS data set. The data will be returned in a structure of the form:

{ CAL: 0d, CAL_ERR 0d, OFFSET: 0d, $
OFFSET_ERR 0d, NUM TYPE: OL }

COORDSYS

Set this keyword to return the data coordinate system description string.

Obsolete IDL Features HDF_DFSD_GETINFO

44 Chapter 2: Obsolete Routines

DIMS

Set this keyword to a named variable in which the dimensions of the current SDS are
returned in alongword array.

FORMAT

Set this keyword to return the data format description string.
LABEL

Set this keyword to return the data label description string.
LASTREF

Set this keyword to return the last reference number written or read for an SDS.
NSDS

Set this keyword to return the number of SDSsin thefile.
RANGE

Set this keyword to return the valid max/min values for the current SDS.
TYPE

Set this keyword to a named variable which returns a string describing the type of the
current SDS (e.g., 'BYTE', 'FLOAT, etc.).

UNIT

Set this keyword to return the data unit description string.
Example

The following commands read an SDS, including information about its dimensions
but not its annotations:

HDF_DFSD_CETI NFO, fil ename, DI MS=d, TYPE=t, RANGE-r, $
LABEL=l , UNI T=u, FORVAT=f, COORDSYS=c

FOR i = 0, N ELEMENTS(d)-1 DO BEG N

HDF_DFSD DI MGET, i, LABEL=dl, UNI T=du, FORMAT=df, SCALE=ds
ENDFOR
HDF DFSD GETDATA, filenane, data

HDF_DFSD_GETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 45

HDF_DFSD GETSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETSLICE procedure reads a dlice of data from the current
Hierarchical Data Format file.

Note
Before calling HDF_DFSD_GETSLICE, call HDF_DFSD_GETINFO with the

DIMS and TY PE keywords to get the dimensions and type of the next data dlice.
Failure to get the dimensions and type will cause the HDF interface to attempt to
read the data incorrectly, and may cause unexpected results.

Syntax

HDF _DFSD_GETSLICE, Filename, Data [, COUNT=vector] [, OFFSET=vector]
Arguments

Filename
A scalar string containing the name of the file to be read.
Data
A named variable in which the data, read from the SDS, is returned.

Keywords
COUNT

An optional vector containing the countsto be used in reading Value. The defaultisto
read all elements in each record taking the value of OFFSET into account.

OFFSET

A vector specifying the array indices within the specified record at which to begin
reading. OFFSET is a 1-dimensional array containing one element per HDF
dimension. The default value is zero for each dimension.

Obsolete IDL Features HDF_DFSD_GETSLICE

46 Chapter 2: Obsolete Routines

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.

HDF_DFSD_GETSLICE Obsolete IDL Features

Chapter 2: Obsolete Routines 47

HDF_DFSD PUTSLICE

This routine is obsolete and should not be used in new IDL code.
The HDF_DFSD_PUTSLICE procedure writes a data slice to the current HDF file.

Note
Before caling HDF_DFSD_PUTSLIDCE, call HDF_DFSD_SETINFO to set the
dimensions and attributes of the dliceand HDF_DFSD_STARTSLICE to initialize
the dlice interface.

Syntax
HDF_DFSD_PUTSLICE, Data [, COUNT=vector]
Arguments

Data

An array containing the data to write. Dimensions used to write the data are taken
from the dimensions of Data, unlessthe COUNT keyword is used.

Keywords
COUNT

An optional vector containing the counts to be used in writing Data. The counts do
have to match the dimensions (number or sizes), but the count cannot describe more
elements than exist.

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.

Obsolete IDL Features HDF_DFSD_PUTSLICE

48 Chapter 2: Obsolete Routines

HDF_DFSD_READREF

This routine is obsolete and should not be used in new IDL code.
The HDF_DFSD_READREF procedure specifies the reference number of the HDF

file to be read by the next call to HDF_DFSD_GETINFO or
HDF_DFSD_GETDATA.
Syntax
HDF_DFSD_READREF, Filename, Refno
Arguments
Filename
A scalar string containing the name of the file to be read.
Refno

The reference number of the desired SDS.

HDF_DFSD_READREF Obsolete IDL Features

Chapter 2: Obsolete Routines 49

HDF_DFSD_SETINFO

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_SETINFO procedure controls information associated with an HDF
file. Because of the manner in which the underlying HDF library was written, it is
necessary to set the dimensions and data type of a scientific data set the first time that
HDF_DFSD_SETINFO is called.

This procedure has many options, controlled by keywords. The order in which the
keywords are specified is unimportant as the routine insures the order of operation for
any given call to it. CLEAR and RESTART requests are performed first, followed by
type and dimension setting, followed by length setting, followed by the remaining
keyword requests.

If you are not writing any ancillary information, you can call
HDF_DFSD_ADDDATA with the SET_TY PE and/or SET_DIMS keywords.

Data string lengths should be set before, or at the same time as, writing the
corresponding data string. For example:

HDF_DFSD_SETI NFO, LEN FORMAT=10, FORMAT='12. 3F
or

HDF_DFSD_SETI NFO, LEN _FORMAT=10
HDF_DFSD_SETI NFO, FORVAT=' 12. 3F

Dueto the underlying C routines, it is necessary to set all four data strings at the same
time, or the unspecified strings are treated as*’ (null strings).

For example:

HDF_DFSD_SETI NFO, LABEL = ' hi’
HDF_DFSD_SETINFO, UNIT = "ergs’

isthe same as:
HDF_DFSD _SETI NFO, LABEL='hi’', UNIT="', FORMAT='', COORDSYS='’
HDF_DFSD SETI NFO, LABEL='', UNI T='ergs’, FORMAT='', COORDSYS='’
Syntax

HDF_DFSD_SETINFO [, CALDATA=structure] [, /CLEAR]
[, COORDSY S=string] [, DIMS=vector] [, /BYTE |, /DOUBLE |, /FLOAT, |,
/INT |, /[LONG] [, FORMAT=string] [, LABEL=string] [, LEN_LABEL=value]
[, LEN_UNIT=value] [, LEN_FORMAT=value] [, LEN_COORDSY S=value]
[, RANGE=[max, min]] [, /RESTART] [, UNIT=string]

Obsolete IDL Features HDF_DFSD_SETINFO

50 Chapter 2: Obsolete Routines

Arguments
None
Keywords

BYTE

Set this keyword to make the SDS data type DFNT_UINTS (1-byte unsigned
integer).

CALDATA
Set this keyword to a structure containing calibration information. The structure

should contain five tags, the first four of which are double-precision floating-point,
and fifth of which should be long integer. For example:

caldata = { Cal: 1.0d $; Calibration factor.
Cal _FErr: 0.1d $; Calibration error.
O fset: 2.5d $; Uncalibrated offset.
Ofset_Err: 0.1d $; Uncalibrated offset error.
Num Type: 5L $; Nunber type of uncalib. data.

Some typical values for the Num Type field include:

For byte data:

3L (DFNT_UCHARB)
21L (DFNT_UI NT8)

For integer data:

22L (DNFT_I NT16)
For long-integer data:

24L (DFNT_I NT32)
For floating-point data:

5L (DFNT_FLOAT32)
6L (DFNT_FLOAT64)

There are other types, but they are not nativeto IDL. They can befound in thehdf . h
header file for the HDF library.

CLEAR

Set this keyword to reset al possible set values to their default value.

HDF_DFSD_SETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 51

COORDSYS
A string for the data coordinate system description.
DIMS

Set this keyword to a vector of dimensions to be used in writing the next SDS. For
example:

HDF_DFSD_SETI NFO, DI Ms = [10, 20, 30]

DOUBLE

Set this keyword to make the SDS datatype DFNT_FLOAT64 (8-byte floating point).
FLOAT

Set this keyword to make the SDS data type DFNT_FL OAT32 (4-byte floating point).
FORMAT

A string for the data format description.
INT

Set this keyword to make the SDS data type DFNT_INT16 (2-byte signed integer).
LABEL

A string for the data label description.
LEN_LABEL

Thelabel string length (default is 255).
LEN_UNIT

The unit string length (default is 255).
LEN_FORMAT

The format string length (default is 255).
LEN_COORDSYS

The format coordinate system string length (default is 255).

Obsolete IDL Features HDF_DFSD_SETINFO

52

Chapter 2: Obsolete Routines

LONG
Set this keyword to make the SDS data type DFNT_INT32 (4-byte signed integer).
RANGE

The minimum and maximum range, represented as a 2-element vector of the same
datatype as the data to be written. The first element is the maximum, the second is
the minimum. For example:

HDF_DFSD_SETI NFO, RANGE = [10, 0]
RESTART

Set this keyword to make the get (HDF_DFSD_GETSLICE) routine read from the
first SDSinthefile.

UNIT

A string for the data unit description.
Example

Write a 100x50 array of longs:

data = LONARR(100, 50)

HDF_DFSD_SETI NFO, /CLEAR, /LONG DI Ms=[100, 50], $
RANGE=[MAX(data), M N(data)], $
LABEL=' pressure’, UN T=' pascals’, $
FORVAT=" F10. O’

HDF_DFSD_SETINFO Obsolete IDL Features

Chapter 2: Obsolete Routines 53

HDF_DFSD_STARTSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_STARTSLICE procedure prepares the system to write aslice of
datato an HDF file. HDF_DFSD_SETINFO must be called before
HDF _DFSD_STARTSLICE to set the dimensions and attributes of the slice.

This procedure must be called before calling HDF_DFSD_PUTSLICE, and must be
terminated with a call to HDF_DFSD_ENDSLICE.

Syntax
HDF_DFSD_STARTSLICE, Filename
Arguments

Filename

A scalar string containing the name of the file to be written.

Example

; Open an HDF file:
fi d=HDF_OPEN(' test. hdf',/ALL)

; Create two datasets:
sl i cedat al=FI NDGEN(5, 10, 15)
sl i cedat a2=DI NDGEN(4, 5)

; Use HDF_DFSD SETINFO to set the dinensions, then add
; the first slice:

HDF_DFSD_SETI NFO, LABEL="| abel 1', DI M5=[5, 10, 15], /FLOAT
HDF_DFSD_STARTSLI CE, ' t est . hdf"'

HDF_DFSD_PUTSLI CE, slicedatal

HDF_DFSD _ENDSLI CE

Repeat the process for the second slice:
HDF_DFSD_SETI NFO, LABEL='1| abel 2', DI M5=[4,5], /DOUBLE
HDF_DFSD_STARTSLI CE, ' t est . hdf"

HDF_DFSD_PUTSLI CE, slicedat a2
HDF_DFSD ENDSLI CE
HDF_DFSD _SETI NFO, / RESTART

Use HDF_DFSD CGETINFO to advance slices and set slice

Obsolete IDL Features HDF_DFSD_STARTSLICE

54 Chapter 2: Obsolete Routines

; attributes, then get the slices:
HDF_DFSD_GETI NFO, name, DI M5=di ms, TYPE=type
HDF_DFSD GETSLICE, outl

HDF_DFSD_GETI NFO, nane, DI Ms=di ns, TYPE=type
HDF_DFSD_GETSLI CE, out2

; Close the HDF file:
HDF_CLOSE('test. hdf')

; Check the first slice to see if everything worked:
IF TOTAL(out1 EQ slicedatal) EQ N _ELEMENTS(outl1l) THEN $
PRINT, 'SLICE 1 WRI TTEN READ CORRECTLY' ELSE $
PRI NT, 'SLICE 1 WRI TTEN READ | NCORRECTLY
; Check the second slice to see if everything worked:
IF TOTAL(out2 EQ slicedata2) EQ N _ELEMENTS(out?2) THEN $
PRI NT, 'SLICE 2 WRI TTEN READ CORRECTLY' ELSE $
PRI NT, 'SLICE 2 WRI TTEN READ | NCORRECTLY

IDL Output
SLI CE 1 WRI TTEN READ CORRECTLY

SLI CE 2 WRI TTEN READ CORRECTLY

HDF_DFSD_STARTSLICE Obsolete IDL Features

Chapter 2: Obsolete Routines 55

HDF_ VD GETNEXT

The HDF_VD_GETNEXT function returns the reference number of the next object
insideaVDatain ah HDF file. If Idis-1, thefirst item in the VDatais returned,
otherwise Id should be set to areference number previously returned by
HDF VD _GETNEXT.HDF VD_GETNEXT returns-1if there was an error or there
are no more objects after the one specified by Id.

Syntax
Result = HDF_VD_GETNEXT(VData, Id)

Arguments

VData

The VData handle returned by a previous call to HDF_VD_ATTACH.
Id
A VGroup or VData reference number obtained by a previous call to
HDF_VG_GETNEXT or HDF_VD_GETNEXT. Alternatively, this value can be set
to -1 to return the first item in the VData.
Version History

Introduced: 4.0

Obsolete IDL Features HDF_VD_GETNEXT

56 Chapter 2: Obsolete Routines

INP, INPW, OUTP, OUTPW

These routines are obsolete and should not be used in new IDL code.
Windows-Only Routines for Hardware Ports

You can address the hardware ports of your personal computer directly using the
following routines. In each case, Port is specified using the hexadecimal address of
the hardware port. For example, if serial port #1 of your PC is at address 3F8, you
would use the following IDL commandsto read that port:

paddr = '3F8' xSet paddr to hexadeci mal val ue.
data = | NPW paddr) Read dat a.

Result = INP(Port, [Dy ... Dy])

Thisfunction returns either one byte (if only the port number is specified) or an array
(the dimensions of which are specified by D, . . . Dy) read from the specified
hardware port. Port is the hardware port number. For example,

result = | NP(paddr)
would read a single byte, and
result = I NP(paddr, 2,4)
would read a two-element by four-element array.

Result = INPW(Port, [D4 . .. Dy])

This function returns either one 16-bit word, as an integer (if only the port number is
specified), or an array (the dimensions of which are specified by D, . . . Dy) from the
specified hardware port. Port is the hardware port number.

OUTP, Port, Value

This procedure writes either one byte or an array of bytesto the specified hardware
port. Port is the hardware port number. Value is the byte value or array to be written.

OUTPW, Port, Value

This procedure writes either one 16-bit word or an array of words to the specified
hardware port. Port is the hardware port number. Value isthe integer value or array to
be written.

INP, INPW, OUTP, OUTPW Obsolete IDL Features

Chapter 2: Obsolete Routines 57

LIVE Tools

The LIVE tools alow you to create, modify, and export visualizations directly from
the IDL command line. In many cases, you can modify your visualizations using the
LIVE tools graphical user interface directly without ever needing to return the IDL
command line. In some cases, however, you may wish to alter your visualizations
programmatically rather than using the graphical user interface. Several LIVE
routines allow you to do this easily.

The process of using the L1VE tools begins with the creation of aLIVE window via
one of the four main LIVE routines. LIVE_CONTOUR, LIVE_IMAGE,
LIVE_PLQOT, and LIVE_SURFACE. When you use one of these four routines at the
IDL command line, you specify some datato be visualized and a L1V E window
appears. You can modify many of the properties of the itemsin your visualization by
double-clicking on the item to call up a Properties dialog.

If you find that the graphical user interface does not allow you to perform the
operation you wish to perform — saving your visualization as an image file, say —
you can use the auxiliary L1V E routines. These routines can be divided into two
groups.

» Overplotting and Annotation Routines that allow you to add annotations to an
existing LIVE window. Theseroutinesinclude LIVE_LINE, LIVE_OPLOT,
LIVE_RECT, and LIVE_TEXT. (Lines, rectangles, and text can also be added
to LIVE windows using the graphical user interface.)

* Information and Control Routines that allow you to get information about an
existing LIVE window, alter its properties, or export visualizations. These
routinesinclude LIVE_CONTROL, LIVE_DESTRQOY, LIVE_EXPORT,
LIVE_INFO, LIVE_PRINT, and LIVE_STYLE.

To usethe auxiliary routines, you will need to know the Name of the L1V E window or
item you wish to alter. To create an IDL variable containing the names of the
elements of aL1VE window, set the REFERENCE_OUT keyword equal to a named
variable when you first create your LIV E window. The returned variable will be a
structure that contains the names of al of the elements in the visualization you have
created. Use the contents of this structure to determine the value of the Name
argument for the auxiliary L1V E tools, or to determine the name of the L1V E window
you wish to alter.

Note
The LIVE tools do not utilize the !X, 1Y, and | Z conventions. Setting these system
variables will have no effect on LIVE tool display.

Obsolete IDL Features LIVE_Tools

58

Chapter 2: Obsolete Routines

LIVE_CONTOUR

The LIVE_CONTOUR procedure displays contour visualizations in an interactive
environment. Because the interactive environment requires extra system resources,
thisroutineis most suitable for relatively small data sets. If you find that performance
does not meet your expectations, consider using the Direct Graphics CONTOUR
routine or the Object Graphics IDLgrContour class directly.

After LIVE_CONTOUR has been executed, you can double-click on a contour lineto
display a propertiesdialog. A set of buttonsin the upper left corner of the window
allows you to print, undo the last operation, redo the last “undone” operation, copy,
draw aline, draw arectangle, or add text.

(&Sl El2][OlAl

oA A NN

Print Undo Redo Copy Line Rectangle Text

Figure 2-1: LIVE_CONTOUR Properties Dialog

You can control your LIVE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 57 for an explanation.

Syntax

LIVE_CONTOUR[, Zy,..., Zo] [, /BUFFER] [, DIMENSIONS=[width,

height]{ normal units}] [, /DOUBLE] [, DRAW_DIMENSIONS=[width,
height]{ devive units}] [, ERROR=variable] [, INDEXED_COLOR]

[, INSTANCING={-1| 0] 1}] [, LOCATION=[x, y]{ normal units}]

[, MANAGE_STYLE] [, NAME=structure] [, /NO_DRAW]
[,/NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]

[, PARENT_BASE=widget_id |, TLB_LOCATION=[Xoffset, Yoffset]{ device
units}] [, PREFERENCE_FILE=filename{full path}]

[, REFERENCE_OUT=variable] [, RENDERER={0 | 1}]

[, REPLACE={structure | {0|1]|2|3|4}}] [, STYLE=name_or_reference]
[, TEMPLATE_FILE=filename] [, TITLE=string] [, WINDOW_IN=string] [, { X
| Y}INDEPENDENT=value] [, {/X | /Y}LOG] [, {X | Y}RANGE=[min,
max]{dataunits}] [, { X | Y} _TICKNAME=array]

LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 59

Arguments

Zn

A vector of data. Up to 25 of these arguments may be specified. If any of the datais
stored in IDL variables of type DOUBLE, LIVE_CONTOUR uses double-precision
to store the data and to draw the result.

Keywords

BUFFER

Set this keyword to bypass the creation of a LIV E window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DOUBLE

Set this keyword to force LIVE_CONTOUR to use double-precision to draw the
result. This has the same effect as specifying datain the Zn argument using IDL
variables of type DOUBLE.

DIMENSIONS

Set this keyword to atwo-element, floating-point vector of the form [width, height]
specifying the dimensions of the visualization in normalized coordinates. The default
is[1.0, 1.0].

DRAW_DIMENSIONS

Set thiskeyword equal to avector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is[452, 452].

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

Obsolete IDL Features LIVE_CONTOUR

60

Chapter 2: Obsolete Routines

INDEXED_ COLOR
If set, the indexed color mode will be used. The default is TrueColor.
INSTANCING

Set this keyword to 1 to instance drawing on, or O to turn it off. The default (-1) isto
useinstancing if and only if the* software renderer” isbeing used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to atwo-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIV E tool
window is destroyed. This keyword has no effect if the STYLE keyword is not set to
astyleitem.

NAME

Set this keyword to a structure containing suggested names for the data items to be
created for this visualization. See the REPLACE keyword for details on how they
will be used. The fields of the structure are as follows. (Any or all tags may be set.)

Tag Description

DATA Dependent Data Name(s)

IX Independent X Data Name

Y Independent Y Data Name

Table 2-1: Fields of the NAME keyword

The default for afield isto use the given variable name. If the variable does not have
aname (i.e., isan expression), a default name is automatically generated. The

LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 61

dependent data names will be used in a round-robin fashion if more data than names
are input.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing results of
LIVE_CONTOUR. Thisisuseful if multiple visualizations and/or annotations are
being created via calls to other LIVE_Toolsin order to reduce unwanted draws and
help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.
NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.
PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
aLIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishesto insert atool into their own widget application will determine the setting
from the parent base sent to the tool.

Note
LIVE _DESTROY on awindow is recommended when using PARENT_BASE so
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in anon-
blocking mode. Putting a LIVE tool into arealized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.

Obsolete IDL Features LIVE_CONTOUR

62 Chapter 2: Obsolete Routines

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name
XAXIS X-Axis Name
YAXIS Y-Axis Name

GRAPHIC Graphic Name(s)
LEGEND Legend Name

DATA Dependent Data Name(s)
IX Independent X Data Name
Y Independent Y Data Name

Table 2-2: Fields of the LIVE_ CONTOUR Reference Structure

Note
You can also determine the name of an item by opening its properties dialog and
checking the “Name” field (or for Windows, by clicking the title bar).

RENDERER

Set this keyword to 1 to use the “software renderer”, or O to use the “hardware
renderer”. The default (-1) isto use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardware
rendering. For more information, see “Hardware vs. Software Rendering” in the
Objects and Object Graphics manual.

REPLACE
Set this keyword to a structure containing tags as listed for the NAME keyword, with

scalar values corresponding to the replacement options listed below. (Any or al of the
tags may be set.) The replacement settings are used to determine what action to take

LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 63

when an item (such as data) being input would have the same name as one already
existing in the given window or buffer (WINDOW _IN).

Alternatively, this keyword may be set to asingle scalar value, which is equivalent to
setting each tag of the structure to that choice.

Setting Action Taken
0 New items will be given unique names.
1 Existing itemswill be replaced by new items (i.e., the old itemswill be
deleted and new ones created).
2 User will be prompted for the action to take.
3 The values of existing items will be replaced. Thiswill cause dynamic

updating to occur for any current uses, e.g., a visualization would
redraw to show the new value.

4 Default. Option O will be used for items that do not have names (e.g.,
datainput as an expression rather than a named variable, with no name
provided viathe NAME keyword). Option 3 will be used for all named
items.

Table 2-3: REPLACE keyword Settings and Action Taken

STYLE

Set this keyword to either a string specifying a style name created using
LIVE_STYLE.

TITLE

Set this keyword to a string specifying the title to give the main window. It must not
aready bein use. A default will be chosen if no titleis specified.

TLB_LOCATION

Set this keyword to atwo-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT _BASE keyword is set. The default is [0, 0.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aLIVE tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the

Obsolete IDL Features LIVE_CONTOUR

64 Chapter 2: Obsolete Routines

REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default isto create a new window.

XINDEPENDENT

Set this keyword to avector specifying the X valuesfor LIVE_CONTOUR. The
default isthe data's index values.

Note
Only one independent vector is allowed; al dependent vectors will use the
independent vector.

YINDEPENDENT

Set this keyword to a vector specifying the Y valuesfor LIVE_CONTOUR. The
default isthe data’s index values.

Note
Only one independent vector is allowed; al dependent vectors will use the
independent vector.

XLOG

Set this keyword to make the X axisalog axis. The default is O (linear axis).
YLOG

Set this keyword to makethe Y axisalog axis. The default is O (linear axis).
XRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the data range.

YRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the Y axis range. The default equals the values computed from
the datarange.

LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 65

X_TICKNAME

Set this keyword equal to an array of stringsto be used to label thetick mark for the X
axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equal s the values computed from the data range.

Examples

Create a dataset to display:
Z=DI ST(10)

Di splay the contour. To mani pul ate contour lines, click on the
pl ot to access a graphical user interface.
LI VE_CONTOUR, Z

Note
Thisisa“Live’ situation. When data of the same name is used multiple times
within the same window, it always represents the same internal dataitem. For
example, if one does the following:

Y=i ndgen(10)
LI VE_PLOT, Y, WNDOW.I N=w, DI MENSI ONS=d, LOCATI ON=l ocl
Y=i ndgen(20)
LI VE_PLOT, Y, WNDOW.I N=w, DI MENSI ONS=d, LOCATI ON=I oc2

Thefirst plot will update to usethe Y of the second plot when the second plot is
drawn. If the user wantsto display 2 “tweaks’ of the same data, a different variable
name must be used each time, or at least one should be an expression (thus not a
named variable). For example:

LI VE_PLOT, Y1,...
LI VE_PLOT, Y2,...

or;

LI VE_PLOT, Y, ...
LI VE_PLOT, nyFunc(Y), ...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable is input.

Obsolete IDL Features LIVE_CONTOUR

66 Chapter 2: Obsolete Routines

Note
The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPLACE keywords.

Version History
Introduced: 5.0
See Also

CONTOUR

LIVE_CONTOUR Obsolete IDL Features

Chapter 2: Obsolete Routines 67

LIVE_CONTROL

The LIVE_CONTROL procedure alows you to set the properties of (or elements
within) avisualization in aLIVE tool from the IDL command line. See
“LIVE_Tools” on page 57 for additional discussion of the routines that control the
LIVE_tools.

Note
The LIVE tools do not utilize the !X, 1Y, and | Z conventions. Setting these system
variables will have no effect on LIVE tool display.

Syntax

LIVE_CONTROL, [Namé] [, /DIALOG] [, ERROR=variable] [, /NO_DRAW]
[, PROPERTIES=structure] [, /SELECT] [, /UPDATE_DATA]
[, WINDOW_IN=string]

Arguments

Name

If keywords DIALOG and/or PROPERTIES are used, Name is a string (case-
insensitive) containing the name of awindow visualization or graphic to operate on.
WINDOW_IN will default to the window or buffer, if only oneis present in the IDL
session.

If keyword UPDATE_DATA is used, Name must be an IDL variable with the same
name as one already used in the given window or buffer (WINDOW_IN). In this case
thereis no default. If UPDATE_DATA is not set, the parameter must be a name of a
window, visualization or visualization e ement.

Keywords

DIALOG

Set this keyword to have the editable properties dialog of the visualization or graphic
appear.

Obsolete IDL Features LIVE_CONTROL

68 Chapter 2: Obsolete Routines

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By defaullt,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

PROPERTIES

Set this keyword to a properties structure with which to modify the given
visualization or graphic. The structure should contain one or more tags as returned
fromaLIVE_INFO call on the same type of item.

UPDATE_DATA

Set this keyword to force the window to update all of its visualizations that contain
the given data passed in the parameter to LIVE_CONTROL.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names are
also visible in visualization window titlebars. If only one L1V E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

; Create a dataset to display:
X=i ndgen(10)

. Plot the dataset:
LI VE_PLOT, X

LIVE_CONTROL Obsolete IDL Features

Chapter 2: Obsolete Routines

Modi fy the dataset:
X=X+2

Repl ace ol d val ues of X
LI VE_CONTROL, X, /UPDATE_DATA

Version History
Introduced: 5.1
See Also

LIVE_INFO, LIVE_STYLE

Obsolete IDL Features

69

LIVE_CONTROL

70 Chapter 2: Obsolete Routines

LIVE_DESTROY

The LIVE_DESTROY procedure alows you to destroy awindow visualization or an
element in avisualization.

Syntax

LIVE_DESTROY, [Namey,..., Namexs] [, /ENVIRONMENT] [, ERROR=variable]
[,/NO_DRAW] [, /PURGE] [, WINDOW_IN=string]

Arguments

Name

A string containing the name of avalid LIVE visualization or element. If a
visualization is supplied, all componentsin the visualization will be destroyed. Up to
25 components may be specified in asingle call. If not specified, the entire window
or buffer (WINDOW _IN) and its contents will be destroyed.

Warning
Using WIDGET_CONTROL to destroy the parent base of aLIVE tool before using

LIVE_DESTROY to clean up will leave hanging object references.

Keywords
ENVIRONMENT

Destroys the LIVE_ Tools environment (background processes).

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

LIVE_DESTROY Obsolete IDL Features

Chapter 2: Obsolete Routines 71

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

PURGE

Destroys LIVE_ Tools (use this keyword for cleaning up the system after fatal errors
in LIVE_ Tools). This keyword may cause the loss of dataif not used correctly.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide thewindow or buffer name. Window namesare
aso visible in visualization window titlebars. If only one L1V E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LI VE DESTROY, 'Line Plot Visualization'

; Destroy window (if only one wi ndow present):
LI VE_DESTROY

Version History

Introduced: 5.1

Obsolete IDL Features LIVE_DESTROY

72 Chapter 2: Obsolete Routines

LIVE_EXPORT

The LIVE_EXPORT procedure allows the user to export a given visualization or
window to an imagefile.

Syntax

LIVE_EXPORT [, /APPEND] [, COMPRESSION={0 | 1 | 2}{ TIFF only}]
[, /IDIALOG] [, DIMENSIONS=[width, height]] [, ERROR=variable]
[, FILENAME=string] [, ORDER={0 | 1}{JPEG or TIFF}]
[, /PROGRESSIVE{JPEG only}] [, QUALITY={0|1|2}{for VRML} |{Oto
100} {for JPEG}] [, RESOLUTION=value] [, TYPE={'BMP' |'IPG' | 'PIC' | 'SRF
| TIF |'XWD'|'VRML"}] [, UNITS={0|1]2}] [, VISUALIZATION_IN=string]
[, WINDOW_IN=string]

Arguments
None
Keywords
APPEND

Specifies that the image should be added to the existing file, creating a multi-image
TIFFfile.

COMPRESSION (TIFF)

Set this keyword to select the type of compression to be used:
e 0=none (default)
e 2=PackBits.

DIALOG

Set this keyword to have a dialog appear allowing the user to choose the image type
and specifications.

LIVE_EXPORT Obsolete IDL Features

Chapter 2: Obsolete Routines 73

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the image in units specified by the UNITS keyword. The default is
[640, 480] pixels.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By defaullt,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

FILENAME

Set this keyword equal to a string specifying the desired name of the imagefile. The
defaultisl i ve_export. ext ensi on, where ext ensi on isone of the following:

brmp, jpg, jpeg, pic, pict, srf, tif, tiff, xwd, vrn
ORDER (JPEG, TIFF)

Set this keyword to have the image written from top to bottom. Default is bottom to
top.

PROGRESSIVE (JPEG)

Set this keyword to write the image as a series of scans of increasing quality. When
used with aslow communications link, a decoder can generate alow-quality image
very quickly, and then improve its quality as more scans are received.

QUALITY (JPEG, VRML)

This keyword specifies the quality index of VRML images and JPEG images. For
VRML, the values are O=L ow, 1=Medium, 2=High. For JPEG therangeis 0
("terrible") to 100 ("excellent"). This keyword has no effect on non-JPEG or non-
VRML images.

RESOLUTION
Set this keyword to a floating-point value specifying the device resolution in
centimeters per pixel. The default is 72 DPI=2.54 (cm/in)/ 0.0352778 (cm/pixel).

Obsolete IDL Features LIVE_EXPORT

74 Chapter 2: Obsolete Routines

Note
It isimportant to match the eventual output device's resolution so that text is scaled

properly.

TYPE

Set this keyword equal to a string specifying the image type to write. Valid strings
are: ‘BMP, 'JPG’, ' JPEG’ (default), ‘PIC, ‘PICT’, ‘SRF, ‘TIF, ‘TIFF, ‘XWD’,
and ‘VRML'.

UNITS

Set this keyword to indicate the units of measure for the DIMENSIONS keyword.
Valid values are 0=Device (default), 1=Inches, 2=Centimeters.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of aLIVE tool
visualization to export. The VIS field from the REFERENCE_OUT keyword from
the creation of the LIVE tool will provide the visualization name. If
VISUALIZATION_IN is not specified, the whole window or buffer (WINDOW _IN)
will be exported.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer, to export. The WIN tag of the REFERENCE_OUT structure from
the creation of the LIVE tool will provide the window or buffer name. Window names
are also visiblein visualization window titlebars. If only one L1VE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LI VE_EXPORT, W NDOW.I N='Live Plot 2'
Version History

Introduced: 5.1

LIVE_EXPORT Obsolete IDL Features

Chapter 2: Obsolete Routines 75

LIVE_IMAGE

The LIVE_IMAGE procedure displays visualizations in an interactive environment.
Double-click on theimageto display a propertiesdialog. A set of buttonsin the upper
left corner of the image window allows you to print, undo the last operation, redo the
last “undone” operation, copy, draw aline, draw arectangle, or add text.

1| | o = | s [N

oA AN vy

Print Undo Redo Copy Line Rectangle Text

Figure 2-2: LIVE_IMAGE Properties Dialog

You can control your LIVE window after it is created using any of several auxiliary
routines. See “LIVE_Tools’ on page 57 for an explanation.

Syntax

LIVE_IMAGE, Image [, RED=byte vector] [, GREEN=byte vector]
[, BLUE=byte vector] [, /BUFFER] [, DIMENSIONS=[width, height]{ hormal
units}] [, DRAW_DIMENSIONS=[width, height]{ devive units}]
[, ERROR=variable] [, /INDEXED_COLOR] [, INSTANCING={-1| 0] 1}]
[, LOCATION=[X, y]{ normal units}] [, /MANAGE_STYLE]
[, NAME=structure] [, /NO_DRAW] [, /NO_SELECTION] [, /NO_STATUS]
[,/NO_TOOLBAR] [, PARENT_BASE=widget_id |,
TLB_LOCATION=[Xoffset, Yoffset]{ device units}]
[, PREFERENCE_FILE=filename{full path}] [, REFERENCE_OUT=variable]
[, RENDERER={0| 1}] [, REPLACE={structure | {0 |1]|2|3|4}}]
[, STYLE=name or_reference] [, TEMPLATE_FILE=filename] [, TITLE=string]
[, WINDOW_IN=string]

Arguments

Image

A two- or three-dimensional array of image data. The three-dimensional array must
befor theform [3,X,Y] or [X,3,Y] or [X,Y,3].

Obsolete IDL Features LIVE_IMAGE

76 Chapter 2: Obsolete Routines

Keywords

BLUE
Set this keyword equal to a byte vector of blue values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are
used to form the color table. The 2D array isa set of valuesthat are just indexesinto

this table.

BUFFER

Set this keyword to bypass the creation of a LIV E window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to atwo-element vector of the form [width, height] to specify the
dimensions of the image in units specified by the UNITS keyword. The default is
[1.0, 1.0].

DRAW_DIMENSIONS

Set this keyword to atwo-element vector of the form [width, height] to specify the
size of the LIVE tools draw widget (in pixels). The default is[452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,

errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

LIVE_IMAGE Obsolete IDL Features

Chapter 2: Obsolete Routines 77

GREEN
Set this keyword equal to a byte vector of green values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are

used to form the color table. The 2D array isa set of valuesthat are just indexesinto
this table.

INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) isto
useinstancing if and only if the “ software renderer” isbeing used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIV E tool
window is destroyed. This keyword will have no effect if the STYLE keyword is not
set to astyleitem.

Obsolete IDL Features LIVE_IMAGE

78

Chapter 2: Obsolete Routines

NAME

Set this keyword to a structure containing suggested names for the itemsto be created
for this visualization. See the REPLACE keyword for details on how they will be
used. Thefields of the structure are as follows. (Any or all of the tags may be set.)

Tag Description

DATA Dependent Data Name(s)
CT Color Table Name

Table 2-4: Fields of the NAME keyword

The default for afield is to use the given variable name. If the variable does not have
aname (i.e., isan expression), a default name is automatically generated.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing results of

LIVE _CONTOUR. Thisisuseful if multiple visualizations and/or annotations are
being created via callsto other LIVE_Toolsin order to reduce unwanted draws and
help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.
NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.
PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
aLIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishestoinsert atool into their own widget application will determine the setting
from the parent base sent to the tool.

LIVE_IMAGE Obsolete IDL Features

Chapter 2: Obsolete Routines 79

Note
LIVE _DESTROY on awindow is recommended when using PARENT_BASE so

that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in anon-
blocking mode. Putting a LIVE tool into arealized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.

RED

Set this keyword equal to a byte vector of red values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are
used to form the color table. The 2D array isaset of valuesthat are just indexesinto
thistable.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table. Note that the
COLORBAR* field does not show up with TrueColor images:

Tag Description
WIN Window Name
VIS Visualization Name
GRAPHIC Graphic Name
CT Color Table Name
COLORBAR* Colorbar Name
DATA Data Name

Table 2-5: Fields of the LIVE_IMAGE Reference Structure

Obsolete IDL Features LIVE_IMAGE

80

RENDERER

Chapter 2: Obsolete Routines

Set this keyword to 1 to use the “ software renderer”, or 0 to use the “hardware
renderer”. The default (-1) isto use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardware
rendering. For more information, see “Hardware vs. Software Rendering” in the
Objects and Object Graphics manual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or al of
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
already existing in the given window or buffer (WINDOW_IN).

Setting

Action Taken

0

New itemswill be given unique names.

1

Existing items will be replaced by new items (i.e., the old items will
be deleted and new ones created).

User will be prompted for the action to take.

The values of existing items will be replaced. Thiswill cause
dynamic updating to occur for any current uses, e.g., avisualization
would redraw to show the new value.

Default. Option O will be used for items that do not have names (e.g.,
datainput as an expression rather than a named variable, with no
name provided viathe NAME keyword). Option 3 will be used for
al named items.

STYLE

Table 2-6: REPLACE keyword Settings and Action Taken

Set this keyword to either a string specifying a style name created using

LIVE_STYLE.

TITLE

Set this keyword to a string specifying thetitle to give the main window. It must not
already bein use. A default will be chosen if no title is specified.

LIVE_IMAGE

Obsolete IDL Features

Chapter 2: Obsolete Routines 81

TLB_LOCATION

Set this keyword to atwo-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the L1VE window from the upper left corner of the screen. This
keyword has no effect if the PARENT _BASE keyword is set. The default is [0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aL1VE tool window, or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

Examples

LI VE_I MAGE, nyl mage
Version History
Introduced: 5.0
See Also

TV, TVSCL

Obsolete IDL Features LIVE_IMAGE

82 Chapter 2: Obsolete Routines
LIVE_INFO

The LIVE_INFO procedure allows the user to get the properties of aLIVE tool.
Syntax

LIVE_INFO, [Nameg] [, ERROR=variable] [, PROPERTIES=variabl€]
[, WINDOW_IN=string]

Arguments

Name

A string containing the name of avisualization or element (case-insensitive). The
default is to use the window or buffer (WINDOW_IN).

Keywords
ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By defaullt,
errors are reported viaa GUI.

Note

If anamed variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

PROPERTIES

Set this keyword to a named variable to contain the returned properties structure. For
adescription of the structures, see Properties Structures below.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aLIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names are
also visible in visualization window titlebars. If only one LI1VE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

LIVE_INFO Obsolete IDL Features

Chapter 2: Obsolete Routines 83

Structure Tables for LIVE_INFO and LIVE CONTROL
The following tables describe the properties structures used by LIVE_INFO and
LIVE_CONTROL (viathe PROPERTIES keyword) for:

e Color Names
e Line Annotations
¢ Rectangle Annotations

¢ Text Annotations

e AXes

» Colorbars
e Images

e Legends
e Surfaces

* Entire Visudizations

e Windows
Color Names

The following color names are the possible values for color properties:

* Black * Red * Green * Yellow

* Blue * Magenta e Cyan » Dark Gray
» Light Gray * Brown e Light Red » Light Green
» Light Blue * Light Cyan * Light Magenta * White

Obsolete IDL Features LIVE_INFO

84

Chapter 2: Obsolete Routines

Line Annotations

The fields in the properties structure of Line Annotations are as follows:

Tag Description
thick 1to 10 pixels
arrow_start 1 =arrow head at line start, 0 = no arrowhead
arrow_end 1 =arrow head at line start, 0 = no arrowhead
arrow_size 0.0 to 0.3 normalized units
arrow_angle | 1.0to 179.0 degrees
linestyle 0O=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot, 5=long
dash
hide 1 = hidden, 0 = visible
name scalar string (unique within all graphics)
color see “Color Names’ on page 83
location [X, y] normalized units
dimensions [width, height] normalized units
uvalue any value of any type (only returned in structure if defined)

Table 2-7: Line Annotation Properties Structure

Rectangle Annotations

LIVE_INFO

Thefields in the properties structure of Rectangle Annotations are as follows:

Tag Description
thick 1to 10 pixels
linestyle O=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot, 5=long
dash
hide 1=hidden, O=visible

Table 2-8: Rectangle Annotation Properties Structure

Obsolete IDL Features

Chapter 2: Obsolete Routines 85
Tag Description
name scalar string (unique within al graphics)
color see “Color Names’ on page 83
location [X, y] normalized units
dimensions | [width, height] normalized units
uvalue any value of any type (only returned in structure if defined)

Table 2-8: Rectangle Annotation Properties Structure (Continued)

Text Annotations

Thefields in the properties structure of Text Annotations are as follows:

Tag Description
fontsize 9to 72 points
fontname Helvetica, Courier, Times, Symbol, and Other (where Other
isavalid name of afont on the local system)
textangle 0.0 to 360.0 degrees
aignment 0.0to 1.0 where 0.0 = right justified and 1.0 = left justified
location [X, y] normalized units
hide 1=hidden, O=visible
name scalar string (unique within all graphics)
value string (scalar or vector) annotation formula (see note below)

enable_formatting

set to alow “!” chars for font commands

color

see “ Color Names’ on page 83

uvalue

any value of any type (only returned in structure if defined)

Table 2-9: Text Annotation Properties Structure

Obsolete IDL Features

LIVE_INFO

86

Note

Chapter 2: Obsolete Routines

Each vector element of the annotation formula (see “value’ tag above) is parsed
once, left to right, for vertical bars (]).

e Two vertical bars surrounding a dataitem name will be replaced by the
corresponding data value(s), possibly requiring multiple lines.

« Two adjacent bars will be replaced by a single bar.

¢ Two bars surrounding text that is not a data item name will be left asis.

AXxes

LIVE_INFO

The fields in the properties structure of Axes are as follows:

Tag

Description

title_FontSize

9to 72 points

titte_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

titte_Color

see“Color Names’ on page 83

tick_FontSize

9to 72 points

tick_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

tick_FontColor

see “Color Names’ on page 83

gridStyle seelinestyle

color see “Color Names’ on page 83

thick 1to 10 pixels

location [x, y] data units

minor number of minor ticks (minimum Q)

major number of mgjor ticks (minimum 0)
default_minor set to compute default number of minor ticks
default_major set to compute default number of major ticks

Table 2-10: Axis Properties Structure

Obsolete IDL Features

Chapter 2: Obsolete Routines

87

Tag Description
tickLen normalized units* 100 = percent of visualization dimensions
subticklen normalized units* 100 = percent of ticklen
tickDir 0 = up (or right), 1 = down (or left)
textPos 0 = below (or left), 1 = above (or right)
tickFormat standard IDL FORMAT string (See STRING function)

excluding parentheses

exact set to use exact range specified

log set to display axisaslog

hide 1=hidden, O=visible

name scalar string (unique within al graphics)

compute_range

set to compute axis range from data min/max

tickName if defined, vector of stringsto use at major tick marks
uvalue any value of any type (only returned in structure if defined)
Table 2-10: Axis Properties Structure (Continued)
Colorbars

Thefields in the properties structure of Colorbars are as follows:

Tag

Description

title Fontsize

9to 72 points

title_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other isa
valid name of afont on the local system)

title_Color see “ Color Names’ on page 83
tick_FontSize seefontsize
tick_Fontname | seefontname

tick_FontColor

see “Color Names’ on page 83

Obsolete IDL Features

Table 2-11: Colorbar Properties Structure

LIVE_INFO

88

LIVE_INFO

Chapter 2: Obsolete Routines

Tag Description

color see “ Color Names’ on page 83

thick 1to 10 pixels

location [%, y]; where [0, O] = lower left and [1, 1] = position where the
entire colorbar fitsinto the upper right of the visualization

minor number of minor ticks (minimum 0)

major number of major ticks (minimum 0)

default_minor set to compute default number of minor ticks

default_major set to compute default number of major ticks

tickLen normalized units* 100 = percent of visualization dimensions

subticklen normalized units* 100 = percent of ticklen

tickFormat standard IDL FORMAT string (See STRING function)
excluding parentheses

show_axis set to display the colorbar axis

show_outline set to display the colorbar outline

axis_thick see thick

dimensions [width, height] normalized units

hide 1=hidden, O=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Table 2-11: Colorbar Properties Structure (Continued)

Obsolete IDL Features

Chapter 2: Obsolete Routines

Contours

89

The fields in the properties structure of Contours are as follows:

Tag Description
min_value minimum contour value to display
max_value maximum contour value to display
downhill set to display downhill tick marks
fill set to display contour levels asfilled
c_thick vector of thickness values (see thick)
c_linestyle vector of linestyle values (see linestyle)
c_color vector of color names (see “Color Names” on page 83)

default n levels

set to default the number of levels

n levels specify a positive number for a specific number of levels
hide 1=hidden, O=visible

name scalar string (unique within al graphics)

uvalue any value of any type (only returned in structure if defined)

"The MIN and MAX value of the data are returned as contour levels when
N_LEVELSisset. Because of this, when setting N_LEVELS, contour plots appear
to have N-2 contour levels because the first (MIN) and last (MAX) level is not
shown. With LIVE_CONTOUR, thisresultsin alegend that contains unnecessary
itemsin the legend (the MIN and the MAX contour level).

Obsolete IDL Features

Table 2-12: Contour Properties Structure

LIVE_INFO

90

Images

Chapter 2: Obsolete Routines

The fields in the properties structure of Images are as follows:

Tag

Description

order

set to draw from top to bottom

sizing_constraint

[0]1]2] O=Natural, 1=Aspect, 2=Unrestricted

dont_byte scale

set to inhibit byte scaling the image

palette name of managed colortable
hide 1=hidden, O=visible
name scalar string (unique within all graphics)
uvalue any value of any type (only returned in LIVE_INFO structure
if defined)
Table 2-13: Image Properties Structure
Legends

LIVE_INFO

The fields in the properties structure of Legends are as follows:

Tag

Description

title_FontSize

9to 72 points

tittle_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

titte_Color

see “Color Names’ on page 83

item_fontSize

seefontsize

item_fontName

Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

text_color color of item text (see “Color Names’ on page 83)
border_gap normalized units* 100 = percent of item text height
columns number of columns to display the items in (minimum Q)

Table 2-14: Legend Properties Structure

Obsolete IDL Features

Chapter 2: Obsolete Routines 91
Tag Description

gap normalized units* 100 = percent of item text height

glyph_Width normalized units * 100 = percent of item text height

fill_color see “Color Names’ on page 83

outline_color see “Color Names’ on page 83

outline_thick see thick

location [X, y]; where[O, O] = lower left and [1, 1] = position where the
entire legend fits into the upper right of the visualization

show_fill set to display thefill color

show_outline set to display the legend outline

title_text String to display in the legend title

item_format standard IDL FORMAT string (See STRING function)
excluding parentheses (contour legends only)

hide 1=hidden, O=visible

name scalar string (unique within al graphics)

uvalue any value of any type (only returned in structure if defined)

Table 2-14: Legend Properties Structure (Continued)
Surfaces

The fields in the properties structure of Surfaces are as follows:

Tag Description
min_value minimum plot line value to display
max_value maximum plot line value to display
lineStyle O=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot,
5=long dash
color see “ Color Names’ on page 83

Obsolete IDL Features

Table 2-15: Surface Properties Structure

LIVE_INFO

92 Chapter 2: Obsolete Routines
Tag Description
thick 1to 10 pixels
bottom see “Color Names’ on page 83
style O=point, 1=wire, 2=solid, 3=ruledXZ, 4=ruledY Z, 5=lego
(wire), 6=lego (solid)
shading O=flat, 1=Gouraud
hidden_lines set to not display hidden lines or points
show_skirt set to display the surface skirt
skirt z value at which skirt is drawn (data units)
hide 1=hidden, O=visible
name scalar string (unique within all graphics)
uvalue any value of any type (only returned in structure if defined)

Table 2-15: Surface Properties Structure (Continued)

Entire Visualizations

The fields in the properties structure of Entire Visualizations are as follows:

Tag

Description

location

[X, y] normalized units

dimensions

[width, height] normalized units

transparent

set to avoid erasing to the background color

color

background color (see “Color Names' on page 83)

hide

1=hidden, O=visible

name

scalar string (unique within all graphics)

uvalue

any value of any type (only returned in structure if defined)

LIVE_INFO

Table 2-16: Visualization Properties Structure

Obsolete IDL Features

Chapter 2: Obsolete Routines

Windows

The fields in the properties structure of Windows are as follows:

Tag

Description

dimensions

2-element integer vector (pixels)

hide

boolean (O=show, 1=hide)

|ocation

2-element integer vector (pixels) from upper |eft
corner of screen

title

string

Examples

LIVE INFO 'x axis',

Version History

Introduced: 5.1

See Also

Table 2-17: Windows Properties Structure

PROPERT! ES=nyPr ops

LIVE_CONTROL, LIVE_STYLE

Obsolete IDL Features

93

LIVE_INFO

94 Chapter 2: Obsolete Routines

LIVE_LINE

The LIVE_LINE procedureis an interface for line annotation.
Syntax

LIVE_LINE [, ARROW_ANGLE=value{1.0to 179.0}] [, /ARROW_END]
[, ARROW_SIZE=value{0.0t0 0.3}] [, /ARROW_START] [, COLOR="color
name'] [, /DIALOG] [, DIMENSIONS=[width, height]] [, ERROR=variable]
[, /HIDE] [, LINESTYLE={0|1]2|3|4|5}] [, LOCATION=[X, y]]
[, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]
[, REFERENCE_OUT=variabl€] [, THICK=pixels{1 to 10}]
[, VISUALIZATION_IN=string] [, WINDOW_IN=string]

Arguments
None
Keywords

ARROW_ANGLE

Set this keyword to afloating-point number between 1.0 and 179.0 degrees to
indicate the angle of the arrowheads. The default is 30.0.

ARROW_END

Set this keyword to indicate an arrowhead should be drawn at the end of theline. Itis
not drawn by default.

ARROW_SIZE

Set this keyword to afloating-point number between 0.0 and 0.3 (normalized
coordinates) to indicate the size of the arrowheads. The default is 0.02.

ARROW_START

Set this keyword to indicate an arrowhead should be drawn at the start of theline. Itis
not drawn by default.

LIVE_LINE Obsolete IDL Features

Chapter 2: Obsolete Routines 95

COLOR

Set this keyword to a string (case-sensitive) of the color to be used for the line. The
default is*Black’. The following colors are available:

» Black * Red e Green * Yellow

* Blue * Magenta e Cyan » Dark Gray

* Light Gray * Brown e Light Red » Light Green

» Light Blue e Light Cyan e Light Magenta * White
DIALOG

Set this keyword to display the line properties dialog appear. The dialog will have all
known properties supplied by keywordsfilled in.

DIMENSIONS

Set this keyword to atwo-element vector of the form [width, height] to specify the X
and Y components of the line in normalized coordinates. The default is[0.2, 0.2].

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By defaullt,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

HIDE

Set this keyword to a boolean value indicating whether this item should be hidden.
e 0=Visble (default)
e 1=Hidden
LINESTYLE

Set this keyword to a pre-defined line style integer:
e 0=solid line (default)

Obsolete IDL Features LIVE_LINE

96

Chapter 2: Obsolete Routines

e 1=dotted

e 2=dashed

+ 3=dashdot

e 4 =dash dot dot

e 5=longdash
LOCATION

Set this keyword to atwo-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.

NAME

Set this keyword equal to a string containing the name to be associated with thisitem.
The name must be unigue within the given window or buffer (WINDOW _IN). If not
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to avariable to return a structure defining names of the modified
visualization’s properties. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visudization Name

GRAPHIC Graphic Name the line created

Table 2-18: Fields of the LIVE_LINE Reference Structure

LIVE_LINE Obsolete IDL Features

Chapter 2: Obsolete Routines 97

THICK

Set this keyword to an integer value between 1 and 10, specifying the line thickness
to be used to draw the line, in pixels. The default is one pixel.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of aL1VE tool
visualization. The VISfield from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW _IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aLIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window namesare
also visible in visualization window titlebars. If only one LI1VE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LI VE_LINE, WNDOWIN="Live Plot 2', $
VI SUALI ZATION_IN="l i ne plot visualization'
; Units are in the visualization units (based on axis ranges).

Version History
Introduced: 5.1
See Also

LIVE_RECT, LIVE_TEXT

Obsolete IDL Features LIVE_LINE

98 Chapter 2: Obsolete Routines
LIVE _LOAD

The LIVE_LOAD procedure loads into memory the complete set of routines
necessary to run all LIVE tools. By default, portions of the set are loaded when first
needed during the IDL session. If you expect to frequently use the tools, you may
wishto call LIVE_LOAD from your IDL “startup file".

Syntax

LIVE_LOAD

Arguments
None

Keywords
None

Version History

Introduced: 5.2

LIVE_LOAD Obsolete IDL Features

Chapter 2: Obsolete Routines 99

LIVE_OPLOT

The LIVE_OPLOT procedure allows the insertion of datainto pre-existing plots.

Syntax

LIVE_OPLOT, Yvectorl [,..., Yvector25] [, ERROR=variable]
[, INDEPENDENT=vector] [, NAME=structure] [, /NEW_AXES]
[, /INO_DRAW] [, /NO_SELECTION] [, REFERENCE_OUT=variabl€]
[, REPLACE={structure| {0|1]2|3|4}}] [, SUBTYPE={'LinePlot’ |
‘ScatterPlot’ | ‘Histogram’ | ‘PolarPlot’}] [, VISUALIZATION_IN=string]
[, WINDOW_IN=string] [, {X | Y}_TICKNAME=array] [, {X |
Y}AXIS_IN=string]

Arguments

YVector

A vector argument of data. Up to 25 of these arguments may be specified.
Keywords

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

INDEPENDENT

Set this keyword to an independent vector specifying the X-Values for
LIVE_OPLOT.

Obsolete IDL Features LIVE_OPLOT

100 Chapter 2: Obsolete Routines

NAME

Set this keyword to a structure containing suggested names for the data items to be
created for thisvisualization. See the REPLACE keyword for details on how they will
be used. Thefields of the structure are as follows. (Any or all of the tags may be set.)

Tag Description

DATA Dependent Data Name(s)

I Independent Data Name

Table 2-19: Fields of the NAME keyword

The default for afield is to use the given variable name. If the variable does not have
aname (i.e., isan expression), a default name is automatically generated. The
dependent data names will be used in around-robin fashion if more data than names
areinput.

Note
Only one independent vector is allowed; all dependent vectors will use the

independent vector.

NEW_AXES

Set this keyword to generate anew set of axes for thisplot line. If this keyword is
specified, the [XY]AXIS_IN keywords will not be used.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

LIVE_OPLOT Obsolete IDL Features

Chapter 2: Obsolete Routines

REFERENCE_OUT

101

Set this keyword to avariable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name
XAXIS X-Axis Name
YAXIS Y-Axis Name
GRAPHIC Graphic Name(s)
LEGEND Legend Name
DATA Dependent Data Name(s)

Independent Data Name

Table 2-20: Fields of the LIVE_OPLOT Reference Structure

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement optionslisted below. (Any or all of the
tags may be set.) The replacement settings are used to determine what action to take
when an item (such as data) being input would have the same name as one aready
existing in the given window or buffer (WINDOW_IN).

Setting Action Taken
0 New items will be given unique names.
1 Existing itemswill be replaced by new items (i.e., the old itemswill be
deleted and new ones created).
2 User will be prompted for the action to take.

Table 2-21: REPLACE keyword Settings and Action Taken

Obsolete IDL Features

LIVE_OPLOT

102 Chapter 2: Obsolete Routines

Setting Action Taken

3 The values of existing itemswill be replaced. Thiswill cause dynamic
updating to occur for any current uses, e.g., avisualization would
redraw to show the new value.

4 Default. Option O will be used for items that do not have names (e.g.,
datainput as an expression rather than a named variable, with no name
provided viathe NAME keyword). Option 3 will be used for al named
items.

Table 2-21: REPLACE keyword Settings and Action Taken
SUBTYPE

Set this keyword to a string (case-insensitive) containing the desired type of plot.
SUBTY PE defaults to whatever is being inserted into, if the [XY]AXIS_IN keyword
is set. If the keywords are not set, then the default isline plot. Valid strings are:

e ‘LinePlot’ (default)

o ‘ScatterPlot’

e ‘'Histogram’

* ‘PolarPlot’
Note

If inserting into a group (defined by the set of axes) that is polar, SUBTY PE cannot
be defined as line, scatter, or histogram. The oppositeisalso true: if inserting into a
line, scatter, or histogram group, then SUBTY PE cannot be defined as polar.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of aLI1VE tool
visualization. The VISfield from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW _IN
Set this keyword equal to a name (string, case-sensitive) of aLI1VE tool window or a

LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names are

LIVE_OPLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 103

aso visible in visualization window titlebars. If only one L1V E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

X_TICKNAME

Set this keyword equal to an array of stringsto be used to label thetick mark for the X
axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equal s the values computed from the data range.

XAXIS_IN

Set this keyword equal to the string name of an existing axis. The name can be
obtained from the REFERENCE_OUT keyword, or visualy from the GUI. The
default isto usethefirst set of axesin the plot.

Note
If thiskeyword is set, you must also set the YAXIS_IN keyword, and both keywords
must be set to a“pair” of axes. The X and Y axes given must be associated with the
same plot line.

YAXIS_IN

Set this keyword equal to the string name of an existing axis. The name can be
obtained from the REFERENCE_OUT keyword, or visually from the GUI. The
default isto use the first set of axesin the plot.

Note
If this keyword is set, you must also set the XAXIS_IN keyword, and both
keywords must be set to a“pair” of axes. The X and Y axes given must be
associated with the same plot line.

Examples

LI VE_OPLOT, tenpData, pressureData
Version History

Introduced: 5.1

Obsolete IDL Features LIVE_OPLOT

104 Chapter 2: Obsolete Routines

See Also

LIVE_PLQOT, PLOT, OPLOT

LIVE_OPLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 105

LIVE_PLOT

The LIVE_PLOT procedure creates an interactive plotting environment.

Click on asection of the plot to display a properties dialog. A set of buttonsin the
upper left corner of the image window allows you to print, undo the last operation,
redo the last “undone” operation, copy, draw aline, draw arectangle, or add text.

1| | o = | s [N

oA AN vy

Print Undo Redo Copy Line Rectangle Text

Figure 2-3: LIVE_PLOT Properties Dialog

You can control your LIVE window after it is created using any of several auxiliary
routines. See “LIVE_Tools’ on page 57 for an explanation.

Syntax

LIVE PLQOT, Yvectorl [, Yvector2,..., Yvector25] [, /BUFFER]
[, DIMENSIONS=[width, height]{ normal units}] [, /DOUBLE]
[, DRAW_DIMENSIONS=[width, height]{ devive units}] [, ERROR=variabl€]
[, /HISTOGRAM |, /LINE |, /POLAR |, /SCATTER] [, /INDEXED_COLOR]
[, INSTANCING={-1|0]| 1}] [, LOCATION=[x, y]{ normal units}]
[, INDEPENDENT=vector] [, MANAGE_STYLE] [, NAME=structure]
[,/NO_DRAW] [, /NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]
[, PARENT_BASE=widget_id |, TLB_LOCATION=[Xoffset, Yoffset]{ device
units}] [, PREFERENCE_FILE=filename{full path}]
[, REFERENCE_OUT=variable] [, RENDERER={0 | 1}]
[, REPLACE={structure| {0]1|2]|3]|4}}] [, STYLE=name_or_reference]
[, TEMPLATE_FILE=filename] [, TITLE=string] [, WINDOW _IN=string] [, {/X
| /Y}ILOG] [, {X | Y}RANGE=[min, max]{data units}] [, {X |
Y}_TICKNAME=array]

Obsolete IDL Features LIVE_PLOT

106 Chapter 2: Obsolete Routines

Arguments

YVector

A vector of data. Up to 25 of these arguments may be specified. If any of the datais
stored in IDL variables of type DOUBLE, LIVE_PLOT uses double precision to
store the data and to draw the resullt.

Keywords

BUFFER

Set this keyword to bypass the creation of a LIV E window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to atwo-element, floating-point vector specifying the dimensions of
the visualization in normalized coordinates. The default is[1.0, 1.0].

DOUBLE

Set this keyword to force LIVE_PLOT to use double-precision to draw the result.
This has the same effect as specifying datain the Y Vector argument using IDL
variables of type DOUBLE.

DRAW_DIMENSIONS

Set this keyword equal to avector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

LIVE_PLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 107

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

HISTOGRAM

Set this keyword to represent plot values as a histogram.
INDEPENDENT

Set this keyword to an independent vector specifying X-valuesfor LIVE_PLOT.
INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) isto
useinstancing if and only if the “ software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LINE

Set this keyword to represent plot values as aline plot. Thisisthe default. Alternate
choices are provided by keywords HISTOGRAM, POLAR, and SCATTER.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIV E tool
window is destroyed. This keyword will have no effect if the STY LE keyword is not
set to astyleitem.

Obsolete IDL Features LIVE_PLOT

108

Chapter 2: Obsolete Routines

NAME

Set this keyword to a structure containing suggested names for the data items to be
created for thisvisualization. See the REPLACE keyword for details on how they will
be used. Thefields of the structure are as follows. (Any or all of the tags may be set.)

Tag Description

DATA Dependent Data Name(s)

I Independent Data Name

Table 2-22: Fields of the NAME keyword

The default for afield is to use the given variable name. If the variable does not have
aname (i.e., isan expression), a default name is automatically generated. The
dependent data names will be used in around-robin fashion if more data than names
areinput.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.
NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.
PARENT_BASE

Set this keyword to the widget 1D of an existing base widget to bypass the creation of
aLIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. To insert atool into your widget
application, you must determine the setting from the parent base sent to the tool.
LIVE _DESTROY on awindow is recommended when using PARENT_BASE so
that proper memory cleanup is done. Destroying the parent base is not sufficient.

LIVE_PLOT Obsolete IDL Features

Chapter 2: Obsolete Routines

Note

109

When specifying a PARENT_BASE, that parent base must be running in anon-
blocking mode. Putting a LIVE tool into arealized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if

blocking had been in effect.

POLAR

Set this keyword to represent plot values as apolar plot. In this case, the arguments to
LIVE_PLOT represent values of r (radius), while the INDEPENDENT keyword
represents the values of T (angle theta). If POLAR is set, you must specify

INDEPENDENT.
REFERENCE_OUT

Set this keyword to avariable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name
XAXIS X-Axis Name
YAXIS Y-Axis Name
GRAPHIC Graphic Name(s)
LEGEND Legend Name
DATA Dependent Data Name(s)

Independent Data Name

Table 2-23: Fields of the LIVE_PLOT Reference Structure

RENDERER

Set this keyword to 1 to use the “software renderer”, or 0 to use the “hardware
renderer”. The default (-1) isto use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardware
rendering. For more information, see “Hardware vs. Software Rendering” in the

Using IDL manual.

Obsolete IDL Features

LIVE_PLOT

110 Chapter 2: Obsolete Routines

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of the
tags may be set.) The replacement settings are used to determine what action to take
when an item (such as data) being input would have the same name as one already
existing in the given window or buffer (WINDOW_IN).

Setting Action Taken
0 New items will be given unique names.
1 Existing items will be replaced by new items (i.e., the old items
will be deleted and new ones created).
2 User will be prompted for the action to take.
3 The values of existing items will be replaced. Thiswill cause

dynamic updating to occur for any current uses, e.q., a
visualization would redraw to show the new value.

4 Default. Option O will be used for items that do not have names
(e.g., datainput as an expression rather than a named variable,
with no name provided viathe NAME keyword). Option 3 will be
used for al named items.

Table 2-24: REPLACE keyword Settings and Action Taken

SCATTER
Set this keyword to represent plot values as a scatter plot.
STYLE

Set this keyword to either a string specifying a style name created with
LIVE_STYLE.

Note
If STYLE isnot set, the default plot style will be used.

TITLE

Set this keyword to a string specifying thetitle to give the main window. It must not
already bein use. A default will be chosen if no title is specified.

LIVE_PLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 111

TLB_LOCATION

Set this keyword to atwo-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the L1VE window from the upper left corner of the screen. This
keyword has no effect if the PARENT _BASE keyword is set. The default is [0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

XLOG

Set this keyword to make the X axisalog axis. The default is O (linear axis).
YLOG

Set this keyword to makethe Y axisalog axis. The default is O (linear axis).
XRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the data range.

YRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the Y axis range. The default equals the values computed from
the data range.

X_TICKNAME

Set this keyword equal to an array of stringsto be used to label thetick mark for the X
axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equal s the values computed from the data range.

Obsolete IDL Features LIVE_PLOT

112 Chapter 2: Obsolete Routines

Examples

Plot two data sets sinultaneously:
LI VE_PLOT, tenpdata, pressureData

Note
Thisisa“Live” situation. When data of the same name is used multiple times
within the same window, it always represents the same internal dataitem. For
example, if one does the following:

Y= i ndgen(10)

LI VE_PLOT, Y, WNDOW.I N=w, DI MENSI ONS=d, LOCATI ON=l ocl
Y = indgen(20)

LI VE_PLOT, Y, WNDOW.I N=w, DI MENSI ONS=d, LOCATI ON=I oc2

Thefirst plot will update to usethe Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks’ of the same data, a different variable

name must be used each time, or at least one should be an expression (thus not a
named variable). For example:

LI VE_PLOT, Y1,...
LI VE_PLOT, Y2,...

or

LI VE_PLOT, Y, ...
LI VE_PLOT, nyFunc(Y), ...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable is input.

Note
The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPL ACE keywords.

Version History
Introduced: 5.0
See Also

LIVE_OPLOT, PLOT, OPLOT

LIVE_PLOT Obsolete IDL Features

Chapter 2: Obsolete Routines 113

LIVE_PRINT

The LIVE_PRINT procedure allows the user to print a given window to the printer.

Syntax

LIVE_PRINT [, /DIALOG] [, ERROR=variable] [, WINDOW_IN=string]
Arguments

None
Keywords

DIALOG
Set this keyword to have a print dialog appear.
ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window namesare
aso visible in visualization window titlebars. If only one L1V E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Obsolete Keywords

The following keywords are obsolete:
« SETUP
For information on obsol ete keywords, See Appendix J, “ Obsol ete Features”.

Obsolete IDL Features LIVE_PRINT

114 Chapter 2: Obsolete Routines

Examples

LI VE PRI NT, WNDOWIN='"Live Plot 2'
Version History
Introduced: 5.1
See Also

DIALOG_PRINTERSETUP, DIALOG_PRINTJOB

LIVE_PRINT Obsolete IDL Features

Chapter 2: Obsolete Routines 115

LIVE_RECT

The LIVE_RECT procedure is an interface for insertion of rectangles.
Syntax
LIVE_RECT [, COLOR="color name'] [, /DIALOG] [, DIMENSIONS=[width,
height]] [, ERROR=variable] [, /HIDE] [, LINESTYLE={0|1|2|3|4]|5}]
[, LOCATION=[x, y]] [, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]

[, REFERENCE_OUT=variable] [, THICK=pixels{ 1 to 10}]
[, VISUALIZATION_IN=string] [, WINDOW_IN=string]

Arguments
None
Keywords
COLOR

Set this keyword to a string (case-sensitive) of the color to be used for the rectangle.
Thedefault is ‘Black’. The following colors are available:

» Black * Red * Green * Yellow

* Blue * Magenta e Cyan » Dark Gray

e Light Gray * Brown e Light Red e Light Green

e Light Blue e Light Cyan « Light Magenta » White
DIALOG

Set this keyword to have the rectangle dialog appear. This dialog will fill in known
attributes from set keywords.

DIMENSIONS

Set this keyword to atwo-element, floating-point vector of the form [width, height] to
specify the dimensions of the rectangle in normalized coordinates. The default is[0.2,
0.2].

Obsolete IDL Features LIVE_RECT

116 Chapter 2: Obsolete Routines

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By defaullt,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

HIDE

Set this keyword to a boolean value indicating whether this item should be hidden.
* 0= Visble (default)
e 1=Hidden
LINESTYLE

Set this keyword to a pre-defined line style integer:
* 0= Solid line (default)

e 1=dotted

e 2=dashed

e 3=dashdot

e 4 =dash dot dot

 5=longdash
LOCATION

Set this keyword to atwo-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.

LIVE_RECT Obsolete IDL Features

Chapter 2: Obsolete Routines 117

NAME

Set this keyword equal to a string containing the name to be associated with thisitem.
The name must be unigue within the given window or buffer (WINDOW _IN). If not
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set thiskeyword to a variable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name
GRAPHIC Graphic Name the rectangle created

Table 2-25: Fields of the LIVE_RECT Reference Structure
THICK

Set this keyword to an integer value between 1 and 10, specifying the line thickness
to be used to draw the line, in pixels. The default is one pixel.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LI1VE tool
visualization. The VISfield from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW _IN
Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a

LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window namesare

Obsolete IDL Features LIVE_RECT

118 Chapter 2: Obsolete Routines

aso visible in visualization window titlebars. If only one L1V E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LI VE_RECT, LOCATION=[O0.1,0.1], DI MENSI ONS=[0.2,0.2],$%
W NDOW I N=" Live Plot 2',VISUALI ZATION IN="Iine plot'

Version History
Introduced: 5.1
See Also

LIVE_LINE, LIVE_TEXT

LIVE_RECT Obsolete IDL Features

Chapter 2: Obsolete Routines 119

LIVE_STYLE

The LIVE_STYLE function allows the user to create a style.
Syntax

Syle=LIVE_STYLE ({ ‘contour’ | 'image’ | 'plot' | 'surface}
[, BASE_STYLE=style name] [, COLORBAR_PROPERTIES=structure]
[, ERROR=variable] [, GRAPHIC_PROPERTIES=structure]
[, GROUP=widget_id] [, LEGEND_PROPERTIES=structure] [, NAME=string]
[, /SAVE] [, TEMPLATE_FILE=filename]
[, VISUALIZATION_PROPERTIES=structure] [, {X | Y |
Z}AXIS _PROPERTIES=structure])

Arguments

Type

A string (case-insensitive) specifying the visualization style type. Available types
include: plot, contour, image, and surface.

Keywords
BASE_STYLE

Set this keyword equal to a string (case-insensitive) containing the name of a
previously saved style. It will be used for defaulting unspecified properties. If not
specified, only those properties you provide will be put into the style. The basic styles
that will always exist include:

Visualization Type Style Name
plot ‘Basic Plot’
contour ‘Basic Contour’
image ‘Basic Image’
surface ‘Basic Surface’

Table 2-26: Base Style Strings

Obsolete IDL Features LIVE_STYLE

120

Chapter 2: Obsolete Routines

COLORBAR_PROPERTIES
Thetable below lists the structure of the COLORBAR_PROPERTIES keyword.

Tag

Description

title_FontSize

9to 72 points

titte_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

titte_Color see color table
tick_FontSize see fontsize
tick_Fontname | seefontname

tick_FontColor

see color table

color see color table

thick 1to 10 pixels

location [X, y] normalized units

minor number of minor ticks (minimum 0)

major number of major ticks (minimum 0)
default_minor set to compute default number of minor ticks
default_mgjor set to compute default number of major ticks
tickLen normalized units* 100 = percent of visualization dimensions
subticklen normalized units* 100 = percent of ticklen
tickFormat see format

show_axis set to display the colorbar axis

show_outline set to display the colorbar outline

axis_thick see thick

dimensions [width, height] normalized units

hide 1=hidden, O=visible

LIVE_STYLE

Table 2-27: Colorbar Properties Structure

Obsolete IDL Features

Chapter 2: Obsolete Routines 121

GRAPHIC_PROPERTIES

Set this keyword equal to a scalar or vector of structures defining the graphic
propertiesto usein creating the style. (Use avector if you want successive graphicsto
have different properties, e.g., different colored linesin aline plot. The structures are
used in around-robin fashion.) Not all properties need be specified (see
BASE_STYLE). The complete structure definitions are listed in the following tables.

Obsolete IDL Features LIVE_STYLE

122 Chapter 2: Obsolete Routines

Plots
Tag Data Type/Description
color string (see color table)
hide boolean (1=hidden, O=visible)
linestyle integer (O=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot
dot, 5=long dash)
nSum integer (1 to number of elements to average over)
symbol_size [x,y] normalized units relative to the visualization
symbol_type | integer (1-7)
thick integer (1 to 10 pixels)

Table 2-28: Plot Graphic Properties Structure

Images
Tag Data Type/Description
hide boolean (1=hidden, O=visible)
order boolean (set to draw from top to bottom)
sizing_constraint integer (O=natural, 1=aspect, 2=unrestricted)
Table 2-29: Image Graphic Properties Structure
Contours
Tag Data Type/Description
downhill boolean (set to display downhill tick marks)
fill boolean (set to display contour levels asfilled)
hide boolean (1=hidden, O=visible)
n_levels integer (number of levels)

Table 2-30: Contour Graphic Properties Structure

LIVE_STYLE Obsolete IDL Features

Chapter 2: Obsolete Routines 123

Tag Data Type/Description
c_thick vector of thickness values
c_linestyle vector of linestyle values
c_color vector of color names
default_n_levels | integer (set to default number of levels)

Table 2-30: Contour Graphic Properties Structure (Continued)

Surfaces
Tag Data Type/Description

bottom string (see color table)

color string (see color table)

hidden_lines boolean (1=don’t show, O=show)

hide boolean (1=hidden, O=visible)

lineStyle integer (O=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash
dot dot, 5=long dash)

shading boolean (0=flat, 1=Gouraud)

show_skirt boolean (1=show, 0=don’t show)

skirt float (z value at which skirt is drawn [data units])

style integer (O=point, 1=wire, 2=solid, 3=ruledXZ, 4=ruledY Z,
5=lego (wire), 6=lego (solid))

thick integer (1 to 10 pixels)

Table 2-31: Surface Graphic Properties Structure
GROUP

Set this keyword to the widget ID of the group leader for error message display. This
keyword is used only when the ERROR keyword is not set. If only one LIVE tool
window is present in the IDL session, it will default to that.

Obsolete IDL Features LIVE_STYLE

124

Chapter 2: Obsolete Routines

LEGEND_PROPERTIES

Set this keyword equal to a structure defining the legend propertiesto usein creating
the style. Not all properties need be specified (see BASE _STYLE). The complete
structure definitions for different types of styles are listed in the following tables.

Tag

Description

title_FontSize

9to 72 points

titte_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other
isavalid name of afont on the local system)

titte_Color see color table

item_fontSize seefontsize

item _fontName | seefontname

text_color see color

border_gap normalized units* 100 = percent of item text height
columns number of columnsto display the items in (minimum 0)
gap normalized units* 100 = percent of item text height
glyph_Width normalized units* 100 = percent of item text height
fill_color see color table

outline_color see color table

outline_thick seethick

location [X, y] normalized units

show_fill set to display thefill color

show_outline set to display the legend outline

hide 1=hidden, O=visible

LIVE_STYLE

Table 2-32: Legend Properties Structure

Obsolete IDL Features

Chapter 2: Obsolete Routines 125

NAME

Set this keyword to a string containing a name for the returned style. If the SAVE
keyword is set, the name must be unique templatefile. If not specified, aname will be
automatically generated.

SAVE

Set this keyword to save the style in the template file. The supplied Name must not
aready exist in the template file or an error will be returned.

VISUALIZATION_PROPERTIES

Set this keyword equal to a structure defining the visualization propertiesto usein
creating the style. Not all properties need be specified (see BASE_STYLE). The
complete structure definition isin the following table.

Tag Data Type

color string (see color table) for background

hide boolean

transparent boolean

Table 2-33: Visualization Properties Structure

XAXIS_PROPERTIES, YAXIS_PROPERTIES,
ZAXIS_PROPERTIES

Set these keywords equal to a scalar or vector of structures defining the axis
propertiesto use in creating the style. (Use a vector to specify property structures for
successive axes of the same direction have different properties. The structures are
used in around-robin fashion.) Not all properties need be specified (see
BASE_STYLE). The user need only define the fields of the structure they wish to be

Obsolete IDL Features LIVE_STYLE

126

different from the BASE style. The complete structure definition is shown in the

following table.

Chapter 2: Obsolete Routines

Tag Data Type
color string (see color table)
default_major integer
default_minor integer
exact boolean
gridstyle integer (0-5) (linestyle)
hide boolean
location 3-element floating vector (normalized units)
major integer (default=-1, computed by IDL)
minor integer (default=-1, computed by IDL)
thick integer (1-10)
tickDir integer
tickLen float (normalized units)
tick_fontname string
tick_fontsize integer

Table 2-34: Axis Properties Structure

Examples

Styl e=LI VE_STYLE(' pl ot', BASE_STYLE='basic plot', $
GRAPHI C_PROPERTI ES={col or:'red'})

Version History
Introduced: 5.1
See Also

LIVE_INFO, LIVE_CONTROL

LIVE_STYLE Obsolete IDL Features

Chapter 2: Obsolete Routines 127

LIVE_SURFACE

The LIVE_SURFACE procedure creates an interactive plotting environment for
multiple surfaces. Because the interactive environment requires extra system
resources, this routine is most suitable for relatively small data sets. If you find that
performance does not meet your expectations, consider using the Direct Graphics
SURFACE routine or the Object Graphics IDLgrSurface class directly.

After LIVE_SURFACE has been executed, you can double-click on asection of the
surface to display a properties dialog. A set of buttons in the upper left corner of the
image window allows you to print, undo the last operation, redo the last “undone”
operation, copy, draw aline, draw arectangle, or add text.

(&Sl El2][OlAl

AAA A vy

Print Undo Redo Copy Line Rectangle Text

Figure 2-4: LIVE_SURFACE Properties Dialog

You can control your LI1VE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 57 for an explanation.

Syntax

LIVE_SURFACE, Data, Data2,... [, /BUFFER] [, DIMENSIONS=[width,
height]{ normal units}] [, /DOUBLE] [, DRAW_DIMENSIONS=[width,
height]{ devive units}] [, ERROR=variable] [, INDEXED_COLOR]

[, INSTANCING={-1|0]| 1}] [, LOCATION=[X, y]{ normal units}]

[, MANAGE_STYLE] [, NAME=structure] [, /NO_DRAW]
[,/NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]

[, PARENT_BASE=widget_id |, TLB_LOCATION=[Xoffset, Yoffset]{ device
units}] [, PREFERENCE_FILE=filename{full path}]

[, REFERENCE_OUT=variable] [, RENDERER={0 | 1}]

[, REPLACE={structure | {0|1]|2]|3|4}}] [, STYLE=name_or_reference]

[, TEMPLATE_FILE=filename] [, TITLE=string] [, WINDOW_IN=string] [, { X
| Y}INDEPENDENT=vector] [, {/X | /Y}LOG] [, {X | Y}RANGE=[min,
max]{dataunits}] [, { X | Y} _TICKNAME=array]

Obsolete IDL Features LIVE_SURFACE

128 Chapter 2: Obsolete Routines

Arguments

Data

A vector of data. Up to 25 of these arguments may be specified. If any of the datais
stored in IDL variables of type DOUBLE, LIVE_SURFACE uses double-precision to
store the data and to draw the resullt.

Keywords

BUFFER

Set this keyword to bypass the creation of a LIV E window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element, floating-point vector of the form [width, height]
specifying the dimensions of the visualization in normalized coordinates. The default

is[1.0, 1.0].
DOUBLE

Set this keyword to force LIVE_SURFACE to use double-precision to draw the
result. This has the same effect as specifying datain the Data argument using IDL
variables of type DOUBLE.

DRAW_DIMENSIONS

Set thiskeyword equal to avector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is[452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By defaullt,
errors are reported viaa GUI.

LIVE_SURFACE Obsolete IDL Features

Chapter 2: Obsolete Routines 129

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or O to turn it off. The default (-1) isto
useinstancing if and only if the “ software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STYLE keyword is not
set to astyleitem.

NAME

Set this keyword to a structure containing suggested names for the dataitems to be
created for this visualization. See the REPLACE keyword for details on how they

Obsolete IDL Features LIVE_SURFACE

130 Chapter 2: Obsolete Routines

will be used. The fields of the structure are as follows. (Any or al of the tags may be

Set.)
Tag Description
DATA Dependent Data Name(s)
IX Independent X Data Name
Y Independent Y Data Name

Table 2-35: Fields of the NAME keyword

The default for afield isto use the given variable name. If the variable does not have
aname (i.e., isan expression), a default name is automatically generated. The
dependent data names will be used in a round-robin fashion if more data than names
areinput.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display

NO_STATUS

Set this keyword to prevent the creation of the status bar.
NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
aLIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishes to insert atool into their own widget application will determine the setting
from the parent base sent to the toal.

LIVE_SURFACE Obsolete IDL Features

Chapter 2: Obsolete Routines 131

Note
LIVE _DESTROY on awindow is recommended when using PARENT_BASE so
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in anon-
blocking mode. Putting a LIVE tool into arealized base already controlled by
XMANAGER will override the XMANAGER mode to /NO_BLOCK even if
blocking had been in effect.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name
GRAPHIC Graphic Name(s)
XAXIS X-Axis Name
YAXIS Y-Axis Name
ZAXIS Z-Axis Name
LEGEND Legend Name
DATA Dependent Data Name(s)
IX Independent X Data Name
Y Independent Y Data Name

Table 2-36: Fields of the LIVE_SURFACE Reference Structure
RENDERER

Set this keyword to 1 to use the “ software renderer”, or 0 to use the “hardware
renderer”. The default (-1) isto use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardware

Obsolete IDL Features LIVE_SURFACE

132 Chapter 2: Obsolete Routines

rendering. For more information, see “Hardware vs. Software Rendering” in the
Objects and Object Graphics manual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to
take when an item (such as data) being input would have the same name as one
already existing in the given window or buffer (WINDOW _IN).

Setting Action Taken

0 New items will be given unique names.

1 Existing itemswill be replaced by new items (i.e., the old items will be
deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. Thiswill cause dynamic

updating to occur for any current uses, e.g., avisualization would
redraw to show the new value.

4 Default. Option O will be used for items that do not have names (e.g.,
datainput as an expression rather than a named variable, with no name
provided viathe NAME keyword). Option 3 will be used for all hamed
items.

Table 2-37: REPLACE keyword Settings and Action Taken

STYLE

Set this keyword to either a string specifying a style name created with
LIVE_STYLE.

TITLE

Set this keyword to a string specifying thetitle to give the main window. It must not
aready bein use. A default will be chosen if no title is specified.

LIVE_SURFACE Obsolete IDL Features

Chapter 2: Obsolete Routines 133

TLB_LOCATION

Set this keyword to atwo-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the L1VE window from the upper left corner of the screen. This
keyword has no effect if the PARENT _BASE keyword is set. The default is [0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

XINDEPENDENT

Set this keyword to a vector specifying X valuesfor LIVE_SURFACE. Thedefault is
the data's index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

YINDEPENDENT

Set thiskeyword to avector specifying Y valuesfor LIVE_SURFACE. Thedefault is
the data's index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

XLOG
Set this keyword to make the X axisalog axis. The default is O (linear axis).
YLOG

Set this keyword to makethe Y axisalog axis. The default is O (linear axis).

Obsolete IDL Features LIVE_SURFACE

134

Chapter 2: Obsolete Routines

XRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the data range.

YRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the Y axis range. The default equals the values computed from
the data range.

X_TICKNAME

Set this keyword equal to an array of stringsto be used to label thetick mark for the X
axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equal s the values computed from the data range.

Examples

This example visualizes two surface representations. To manipulate any part of the
surface, double click on surface to access agraphical user interface:

LI VE_SURFACE, tenpData, pressureData
Note
Thisisa“Live” situation. When data of the same name is used multiple times
within the same window, it always represents the same internal dataitem. For
example, if one does the following:

Y = indgen(10)
LI VE_PLOT, Y, WNDOW.I|N=w, DI MENSI ONS=d, LOCATI ON=l ocl
Y = i ndgen(20)
LI VE_PLOT, Y, WNDOW.IN=w, DI MENSI ONS=d, LOCATI ON=I oc2

Thefirst plot will update to usethe Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks’ of the same data, a different variable

name must be used each time, or at |east one should be an expression (thus not a
named variable). For example:

LI VE_PLOT, Y1,...
LI VE_PLOT, Y2,...

LIVE_SURFACE Obsolete IDL Features

Chapter 2: Obsolete Routines 135

or;

LI VE_PLOCT, Y, ...
LI VE_PLOT, nyFunc(Y),...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable is input.

Note
The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPLACE keywords.

Version History
Introduced: 5.0
See Also

SURFACE, SHADE_SURF

Obsolete IDL Features LIVE_SURFACE

136 Chapter 2: Obsolete Routines

LIVE_TEXT

The LIVE_TEXT procedureis an interface for text annotation. You can control your
LIVE window after it is created using any of several auxiliary routines. See
“LIVE_Tools” on page 57 for an explanation.

Syntax

LIVE_TEXT[, Text] [, ALIGNMENT=value{0.0 to 1.0}] [, COLOR="color name]
[, /DIALOG] [, /ENABLE_FORMATTING] [, ERROR=variable]
[, FONTNAME=string] [, FONTSIZE=points{9 to 72}] [, /HI DE]
[, LOCATION=[x, y]] [, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]
[, REFERENCE_OUT=variable] [, TEXTANGL E=value{ 0.0 to 360.0}]
[, VERTICAL_ALIGNMENT=value{0.0 to 1.0}]
[, VISUALIZATION_IN=string] [, WINDOW_IN=string]

Arguments

Text

The string to be used for the text annotation. The default is“Text”. If Text isan array
of strings, each element of the string array will appear on a separate line.

Keywords
ALIGNMENT

Set this keyword to afloating-point value between 0.0 and 1.0 to indicate the
horizontal alignment of the text. The alignment scheme is as follows:

o N— 0.5 - 0.0
Left Middle Right
COLOR

Set this keyword to a string (case-sensitive) of the foreground color to be used for the
text. The default is‘Black’. The following colors are available:

» Black * Red * Green * Yellow
* Blue * Magenta e Cyan » Dark Gray

LIVE_TEXT Obsolete IDL Features

Chapter 2: Obsolete Routines 137

* Light Gray * Brown * Light Red * Light Green
» Light Blue e Light Cyan « Light Magenta * White
DIALOG

Set this keyword to have the text annotation dialog appear. This dialog will fill in
known attributes from set keywords.

ENABLE_FORMATTING

Set this keyword to have LIVE_TEXT interpret “!” (exclamation mark) as font and
positioning commands.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By defaullt,

errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

FONTNAME

Set this keyword to a string containing the name of the desired font. The default is
Helvetica

FONTSIZE

Set this keyword to an integer scalar specifying the font point size to be used. The
default is 12. Available point sizes are 9 through 72.

HIDE
Set this keyword to a boolean value indicating whether this item should be drawn:
e 0= Draw (default)

« 1=Donot draw

Obsolete IDL Features LIVE_TEXT

138

Chapter 2: Obsolete Routines

LOCATION

Set this keyword to atwo-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.

NAME

Set thiskeyword equal to a string containing the name to be associated with thisitem.
The name must be unigue within the given window or buffer (WINDOW_IN). If not
specified, a unique name will be assighed automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table:

Tag Description
WIN Window Name
VIS Visualization Name
GRAPHIC Graphic Name the text created

Table 2-38: Fields of the LIVE_TEXT Reference Structure

TEXTANGLE

Set this keyword to afloating-point value defining the angle of rotation of the text.
Thevalid rangeis from 0.0 to 360.0. The default is 0.0.

LIVE_TEXT Obsolete IDL Features

Chapter 2: Obsolete Routines 139

VERTICAL_ALIGNMENT

Set this keyword to afloating-point value between 0.0 and 1.0 to indicate the vertical
alignment of the text baseline. The alignment scheme is as follows:

0.0 Top
0.5 Middle
1.0 Bottom

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of aLI1VE tool
visualization. The VISfield from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visuaization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window namesare
aso visible in visualization window titlebars. If only one L1V E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LI VE_TEXT, 'My Annotation', WNDOWIN="Live Plot 2', $
VI SUALI ZATION_IN="l i ne plot visualization'

Version History
Introduced: 5.1
See Also

LIVE_LINE, LIVE_RECT

Obsolete IDL Features LIVE_TEXT

140

Chapter 2: Obsolete Routines

LILCT

LILCT

This routine is obsolete and should not be used in new IDL code.

The LILCT procedure loads standard color tables for LJ-250/252 printer. The color
tables are modified only if the deviceis currently setto“LJ".

The default color maps used are for the 90 dpi color palette. There are only 8 colors
available at 180 dpi.

If the current deviceis‘LJ, the!D.N_COLORS system variable is used to determine
how many bit planes are in use (1 to 4). The standard color map for that number of
planes is loaded. These maps are described in Chapter 7 of the LJ250/L.J252
Companion Color Printer Programmer Reference Manual, Table 7-5. That manual
gives the values scaled from 1 to 100, LJLCT scales them from O to 255.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
Ijlct.prointheli b subdirectory of the IDL distribution.

Syntax

LILCT

Example

; Set plotting to the LJ device:
SET_PLOT, 'LJ'

Load the LJ color tables:
LJLCT

Obsolete IDL Features

Chapter 2: Obsolete Routines 141

MSG_CAT CLOSE

The MSG_CAT_CLOSE procedure closes a catal og file from the stored cache.
Syntax
MSG_CAT_CLOSE, object
Arguments
object
The object reference returned from MSG_CAT_OPEN.
Keywords
None
Version History
Introduced: 5.2.1
See Also

MSG_CAT_COMPILE, MSG_CAT_OPEN, IDLffLanguageCat

Obsolete IDL Features MSG_CAT_CLOSE

142

MSG_CAT COMPILE

Chapter 2: Obsolete Routines

The MSG_CAT_COMPILE procedure creates an IDL language catalog file.

Note

Thelocale is determined from the system locale in effect when compilation takes
place.

Syntax

MSG_CAT_COMPILE, input[, output] [, LOCALE_ALIAS=string] [, /MBCS)
Arguments

input

The input file with which to create the catalog. The file is atext representation of the
key/MBCS association. Each line in the file must have a key. The language string
must then be surrounded by double quotes, then an optional comment.

For example:
VERSION "Version 1.0 My revision number of thefile

There are 2 specid tags, one of which must be included when creating the file:
APPLICATION (required)

SUB_QUERY (optional)
output

The optional output file name (including path if necessary) of the IDL language
catalog file.

The naming convention for IDL language catalog filesis as follows:
idl_ + "Application nane" + _ + "Locale" + .cat

For example:
i dl _envi _usa_eng. cat
If not set, adefault filename is used based on the locale;

idl _[locale].cat

MSG_CAT_COMPILE Obsolete IDL Features

Chapter 2: Obsolete Routines 143

Keywords

LOCALE_ALIAS

Set this keyword to a scalar string containing any locale aliases for the locale on
which the catalog is being compiled. A semi-colon is used to separate locales.

For example:

MSG_CAT_COWPI LE, "input.txt', "idl_envi_usa eng.cat',$
LOCALE ALI AS=' C

MBCS

If set, this procedure assumes language strings to be in MBCS format. The default is
8-bit ASCII.

Version History
Introduced: 5.2.1
See Also

MSG_CAT_CLOSE, MSG_CAT_OPEN, IDLffLanguageCat

Obsolete IDL Features MSG_CAT_COMPILE

144 Chapter 2: Obsolete Routines

MSG_CAT OPEN

The MSG_CAT_OPEN function opens a specified catalog object file.
Syntax

Result = MSG_CAT_OPEN(application [, DEFAULT_FILENAM E=filename]
[, FILENAME=string] [, FOUND=variable] [, LOCALE=string] [, PATH=string]
[, SUB_QUERY =value])

Return Value

Returns a catalog object for the given parametersif found. If amatch is not found, an
unset catalog object is returned. If unset, the IDLffLanguageCat::Query method will
aways return the empty string unless a default catalog is provided.

Arguments

application

A scalar string representing the name of the desired application's catalog file.
Keywords
DEFAULT_FILENAME

Set this keyword to a scalar string containing the full path and filename of the catalog
fileto open if the initial request was not found.

FILENAME

Set this keyword to a scalar string containing the full path and filename of the catal og
file to open. If this keyword is set, application, PATH and LOCALE are ignored.

FOUND

Set this keyword to a named variable that will contain 1 if a catalog file was found, O
otherwise.

MSG_CAT_OPEN Obsolete IDL Features

Chapter 2: Obsolete Routines 145

LOCALE

Set this keyword to the desired locale for the catalog file. If not set, the current locale
is used.

PATH

Set this keyword to a scalar string containing the path to search for language catalog
files. The default is the current directory.

SUB_QUERY

Set this keyword equal to the value of the SUB_QUERY key to search against. If a
match isfound, it isused to further sub-set the possible return catalog choices.

Version History
Introduced: 5.2.1
See Also

MSG_CAT_CLOSE, MSG_CAT_COMPILE, IDLffLanguageCat

Obsolete IDL Features MSG_CAT_OPEN

146 Chapter 2: Obsolete Routines

ONLINE_HELP PDF_INDEX

The ONLINE_HELP _PDF _INDEX procedure displays a searchable index of the

IDL PDF documentation set. It is available only on UNIX platforms that support the
IDL-Acrobat plug-in. (For more information on the IDL Acrobat plug-in, see “About
IDL’s Online Help System” in Chapter 16 of the Building IDL Applications manual.)

Warning
ONLINE_HELP_PDF_INDEX is not supported in IDL releases after IDL 6.2.

ONLINE_HELP_PDF _INDEX isawidget-based graphical application. The
interface and its controls are described in “Using ONLINE_HELP_PDF_INDEX” on
page 147.

Warning
The ONLINE_HELP_PDF _INDEX procedure relies on the presence of thefile

mi ndex. t xt inthe Hel p subdirectory of the IDL distribution. If thisfileis not
present, ONLINE_HELP _PDF _INDEX will exit with an error.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
onl i ne_hel p_pdf _i ndex. prointhel i b subdirectory of the IDL distribution.

Syntax

ONLINE_HELP_PDF_INDEX [, SearchTerm|
Arguments

SearchTerm

A scalar string containing aterm to be located in the IDL master index. SearchTerm
will be loaded into the ONLINE_HELP_PDF_INDEX widget application’s search
field, and the index list will scroll to the top-level index entry that most closely
matches SearchTerm.

Note
See “The “Always Show This List” Checkbox” on page 148 for information on

modifying this behavior.

ONLINE_HELP_PDF_INDEX Obsolete IDL Features

Chapter 2: Obsolete Routines 147

Keywords
None.

Using ONLINE_HELP_PDF_INDEX

The ONLINE_HELP_PDF_INDEX utility presents awidget interface with two tabs:
one that allows searching in and selecting items from the IDL Master Index, and one
that allows the user to define topics of interest within the IDL PDF documentation
Set.

3 IDL Documentation Index M= E 3¢ IDL Documentation Index [_10]
Help Help
Indsx | Bockmarks | Index | Bookmarks |

Enter a search string Select a bookmark

5 Table Widget Reference, 2307 Ref
5E Using Table Widgets, 348 Bld
HandiBuide, ﬂh[

Y

E

YMANAGER: procedure
managing widget events, HEEREIE]
overview, 750 Bld
reference, 2413 Ref
when to use NREGISTERED, 758 Eld

YMANAGERTOOL, see obsolste routines

MMARGIN keyword, 3381 Ref

¥MAN wachine-specific paranster, 1193 Ref

MMENU, see obsolete routines

YMIN wachine-specific paranster, 1193 Ref

YMINOR keyword, 3881 Ref

L

See also IILFFXHLSAY.
defined, 572 Bld
I0H, 572 Bld
0, 577 Bld
parsers u
defined, 572 Bld
IILFFUMLSAY, 2630 Ref)
SA, 573 Bld
Schewa, 577 Bld
validation, 577 Bld Iz Bt
HHLSAY object, 514 Use
HHNG_THPL procedurs, 2422 Rt .
o e el Booknark Text: |Handifuide
HIBIVIEN procedurs, 2476 Ref
YOBJVIEN_ROTATE procedure, 2436 Ref .
NOBJYIEM_WRITE_IHAGE procedure, 2428 Ref Bt s (AR =
Yoffset, 135 EDG

HOFFSET keyword s |2
graphics positioning, 3321 Ref Page nunber: |27

PrstSer {pt prsitioning, 5048 Ref
] Add Edit Delets

I~ T
I Aluays Show This List

Done | Display Display

Figure 2-5: The ONLINE_HELP_PDF_INDEX Interface

Using the Index Tab

The IDL Master Index is asingle document that includes index entries for the entire
IDL documentation set. It isincluded in the hel p subdirectory of the IDL
distribution in an Adobe Acrobat PDF version (ni ndex. pdf) and atext-only version
(m ndex. t xt).

Obsolete IDL Features ONLINE_HELP_PDF_INDEX

148

Chapter 2: Obsolete Routines

Selecting and Displaying Topics

Tousethe ONLINE_HELP PDF _INDEX interfaceto search for aterm in the master
index, select the Index tab and type into the Enter a search string field. The index
list will scroll automatically to the top-level index entry that most closely matchesthe
string you enter, and the first page number/book abbreviation combination will be
highlighted.

To display the selected page in the Adobe Acrobat viewer, click Display, pressthe
Enter key, or double-click on the highlighted entry using the mouse.

To switch between the search field and the index list, pressthe Tab key. When the
index list is selected, change the highlighted item using the arrow keys on your
keyboard.

Click Done to dismiss the Index widget.
The “Always Show This List” Checkbox

By default, the ONLINE_HELP_PDF_INDEX interfaceis displayed every time the

“?" or ONLINE_HELP command is used, even if SearchTermisfound and displayed
in the Adobe Acrobat viewer. Unchecking the Always Show This List checkbox on
the Index tab changes this behavior, and only displays the interface if SearchTermis
not found in the PDF documentation set.

Using the Bookmarks Tab

To define personal topics of interest in the IDL documentation set, select the
Bookmarks tab.

To display the page associated with a bookmark in the Adobe Acrobat viewer:
1. Highlight the bookmark using the mouse or arrow keys.

2. Click Display, pressthe Enter key, or double-click on the highlighted entry
using the mouse.

To add a new bookmark:
Enter adescriptive string in the Bookmark text field.

2. Select amanua from the IDL documentation set from the Book pulldown
menul.

Enter the page number in the Page number field.
Click Add.

To modify an existing bookmark:

ONLINE_HELP_PDF_INDEX Obsolete IDL Features

Chapter 2: Obsolete Routines 149

1. Highlight the bookmark in thelist.

2. Make the appropriate changes in the Bookmark text, Book pulldown list, and
Page number fieldsand click Edit.

To delete a bookmark, highlight the bookmark in the list and click Delete.

Note
There must be at least one bookmark. If you delete the only bookmark in the

bookmarks list, a new default bookmark will be created for you.

About Bookmarks

Each IDL user on aUNIX system has a persona bookmarks file that can be used to
store index-like references to pages in IDL's PDF documentation set.

Note
Bookmarks into the PDF documentation set will work only for the version of IDL

with which they were created.

Like index entries, bookmarks refer to a specific page in one of the IDL manuals.
Because page numbers generally change when anew version of an IDL manual is
released, bookmarks from one release of IDL will typically not point to the same
information in the PDF files provided with a different release. This means that when
you install and run anew version of IDL, your existing bookmarkswill no longer be
valid, and they will not be copied to the new bookmarksfile.

Examples

On aUNIX platform that supports the IDL-Acrobat plug-in, entering “?’ with no
search term at the IDL command prompt displaysthe ONLINE_HELP PDF INDEX

interface.

Obsolete IDL Features ONLINE_HELP_PDF_INDEX

150 Chapter 2: Obsolete Routines

PICKFILE

This routine is obsolete and should not be used in new IDL code.

The PICKFILE function has been renamed but retains the same functionality it had in
previous releases. See DIALOG_PICKFILE in the IDL Reference Guide.

PICKFILE Obsolete IDL Features

Chapter 2: Obsolete Routines 151

POLYFITW

Thisroutine is obsolete and should not be used in new IDL code. To perform a
weighted polynomial fit, use the MEASURE_ERRORS keyword to POLY _FIT.

The POLY FITW function performs a weighted |east-square polynomial fit with
optional error estimates and returns a vector of coefficients with alength of
NDegree+1.

The POLY FITW routine uses matrix inversion. A newer version of this routine,
SVDHIT, uses Singular Value Decomposition. The SV D technique is more flexible,
but slower. Another version of thisroutine, POLY FIT, performs aleast square fit
without weighting.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
pol yfitw prointheli b subdirectory of the IDL distribution.

Syntax

Result = POLYFITW(X, Y, Weights, NDegree [, Yfit, Yband, Sgma, Corrm|
[, /IDOUBLE] [, STATUS=variable])

Arguments

X

An n-element vector of independent variables.

Y

A vector of independent variables, the same length as X.
Weights

A vector of weights, the same length as X and .
NDegree

The degree of the polynomial to fit.
Yfit

A named variable that will contain the vector of calculated Y values. These values
have an error of plus or minus Yband.

Obsolete IDL Features POLYFITW

152 Chapter 2: Obsolete Routines

Yband

A named variable that will contain the error estimate for each point.
Sigma

A named variable that will contain the standard deviation of the returned coefficients.
Corrm

A named variable that will contain the correlation matrix of the coefficients.
Keywords
DOUBLE

Set this keyword to force computations to be done in double-precision arithmetic.
STATUS

Set this keyword to a named variable to receive the status of the operation. Possible
status values are:

* 0= Successful completion.
* 1=Singular array (which indicatesthat the inversion isinvalid). Result is NaN.

e 2=Warning that asmall pivot element was used and that significant accuracy
was probably lost.

¢ 3 =Undefined (NaN) error estimate was encountered.

Note
If STATUS is not specified, any error messages will be output to the screen.

Tip
Status values of 2 or 3 can often be resolved by setting the DOUBLE keyword.

POLYFITW Obsolete IDL Features

Chapter 2: Obsolete Routines 153

REWIND

This routine is obsolete and should not be used in new IDL code.

The REWIND procedure rewinds the tape on the designated IDL tape unit. REWIND
isavailable only under VMS. See the description of the magnetic tape routinesin
“VMS-Specific Information” in Chapter 8 of Building IDL Applications.
Syntax
REWIND, Unit
Arguments
Unit

The magnetic tape unit to rewind. Unit must be a number between 0 and 9, and
should not be confused with standard file Logical Unit Numbers (LUNS).

Obsolete IDL Features REWIND

154

Chapter 2: Obsolete Routines

RIEMANN

This routine is obsolete and should not be used in new IDL code. RIEMANN has
been replaced by the RADON function.

The RIEMANN procedure computes the “ Riemann sum” (or itsinverse) which helps
implement the backprojection operator used to reconstruct the cross-section of an
object, given projections through the object from multiple directions. This technique
iswidely used in medical imaging in the fields of computed x-ray tomography, MRI
imaging, Positron Emission Tomography (PET), and a so has applications in other
areas such as seismology and astronomy. The inverse Riemann sum, which evaluates
the projections given a slice through an object, is also a discrete approximation to the
Radon transform.

Given amatrix A(m,n), which will contain the reconstructed slice; a vector P,
containing the ray sums for a given view; and an angle Theta measured in radians
from the vertical: the Riemann sum “backprojects’ the vector P into A. For each
element of A, the value of the closest element of P is summed, leaving theresultin A.
Bilinear interpolation is an option. All operations are performed in single-precision
floating point.

In the reverse operation, the ray sums contained in the view vector, P, are computed
given the original dice, A, and Theta. Thisis sometimes called “front projection”.

The Riemann sum can be written:
M-1

Z A(r-cos(i-A=0),i-A)
i=0

which isthe sum of the data along lines through an image with an angle of thetafrom
the vertical.

Syntax

RIEMANN

RIEMANN, P, A, Theta [, /BACKPROJECT] [, /BILINEAR] [, CENTER=value]
[, COR=vector] [, CUBIC=value{-1to 0}] [, D=spacing] [, ROW=value]

Obsolete IDL Features

Chapter 2: Obsolete Routines 155

Arguments
P

A k-element floating-point projection vector (or matrix if the ROW keyword is
specified). For backprojection (when the BACKPROJECT keyword is set), P
contains the ray sums for asingle view. For the inverse operation, P should contain
zeros on input and will contain the ray sums for the view on output.

A

An m by n floating-point image matrix. For backprojection, A contains the
accumulated results. For the inverse operation, A contains the original image.
Typically, k should be larger than

Jm? +n?
which isthe diagonal size of A.
Theta

The angle of the ray sums from the vertical.
Keywords
BACKPROJECT

Set this keyword to perform backprojection in which P is summed into A. If this
keyword is not set, the inverse operation occurs and the ray sums are accumulated
into P.

BILINEAR

Set this keyword to use bilinear interpolation rather than the default nearest neighbor
sampling. Results are more accurate but slower when bilinear interpolation is used.

CENTER

Set this keyword equal to afloating-point number specifying the center of the
projection. The default value for CENTER is one-half the number of elements of P.

Obsolete IDL Features RIEMANN

156 Chapter 2: Obsolete Routines

COR

Set this keyword equal to atwo-element fl oating-point vector specifying the center of
rotation in the array A. The default valueis[nV2., n/2.], where Aisan mby n array.

For symmetric results, given symmetric operands, COR should be set to the origin of
symmetry [(m-1)/2, (n-1)/2], and CENTER should be set to (n-1)/2., where nisthe
number of elementsin the projection vector, P.

CUBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Setting
this keyword equal to avalue greater than zero specifies avalue of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is a band-limited signal, with no frequency
component larger than wq, and f is sampled with spacing less than or equal to 1/2w,
then f can be reconstructed by convolving with asinc function: sinc (x) = sin (nx) /

(1x).

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation is
significantly slower than bilinear interpolation.

For further details see:

Rifman, S.S. and McKinnon, D.M., “ Evaluation of Digital Correction Techniquesfor
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

D

Usethis keyword to specify the spacing between elements of P, expressed in the same
units as the spacing between elements of A. The default is 1.0.

RIEMANN Obsolete IDL Features

Chapter 2: Obsolete Routines

ROW

157

Set this keyword to specify the P vector as a given row within a matrix, so that the
sinogram array can be used directly without having to extract or insert each row. In
this case, P must be an array with afirst dimension egqual to k, and the value of ROW
must be in the range of 0 to the number of vectors of length k in P, minus one.

Example

This example forms a synthetic image in A, computes Nviews equally spaced views,
and stores the stacked projections (commonly called the “sinogram”) in amatrix PP,
It then backprojects the projections into the matrix B, forming the reconstructed slice.

In practical use, the projections are convolved with afilter before being

backprojected.

; Define nunber of colums in A:
N = 100L

Def i ne nunber of rows in A
M = 100L
; Nunber of views:
nviews = 100

; The length of the |ongest projection. If filtered backprojection
; is used, 1/2 the length of the convol ution kernel nust also be
; added.

K = CEIL(SQRT(N*2 + M2))

; Formoriginal slice:
A = FLTARR(N, M

; Sinulate a square object:
AN 2:N2+5, M2:M2+5] = 1.0

; Make array for sinogram
pp = FLTARR(K, nviews)

; Conpute each view
FOR 1=0, NVIEWS-1 DO RI EMANN, pp, A | * !'Pl/nviews, ROMI

; Show si nogram
TVSCL, pp

; Initial reconstructed inmage:
B = FLTARR(N, M

Obsolete IDL Features RIEMANN

158 Chapter 2: Obsolete Routines

; Do the backprojection for each view
FOR I =0, nviews-1 DO $
RIEMANN, pp, B, I * I'PI/nviews, /BACKPRQIECT, RO

; Show reconstructed array:
TVSCL, B

RIEMANN Obsolete IDL Features

Chapter 2: Obsolete Routines 159

RSTRPOS

This routine is obsolete and should not be used in new IDL code.

The RSTRPOS function has been replaced by the STRPOS function’s
REVERSE SEARCH keyword. See “STRPOS’ in the IDL Reference Guide manual.

The RSTRPOS function finds the last occurrence of a substring within an object
string (the STRPOS function finds the first occurrence of asubstring). If the substring
isfound in the expression, RSTRPOS returns the character position of the match,
otherwise it returns -1.

Syntax
Result = RSTRPOS(Expression, Search_String [, Pog])
Arguments
Expression

The expression string in which to search for the substring.
Search_String
The substring to be searched for within Expression.

Pos

The character position before which the search is begun. If Posis omitted, the search
begins at the last character of Expression.

Example

Define the expression:
exp = 'Holy snokes, Batman!'

Find the position of a substring:
pos = RSTRPOS(exp, 'snokes')

Print the substring’ s position:
PRI NT, pos

IDL prints:
5

Obsolete IDL Features RSTRPOS

160 Chapter 2: Obsolete Routines

Note
Substring begins at position 5 (the sixth character).

RSTRPOS Obsolete IDL Features

Chapter 2: Obsolete Routines 161

SET _SYMBOL

This routine is obsolete and should not be used in new IDL code.

The SET_SYMBOL procedure defines a DCL (Digital Command Language)
interpreter symbol for the current process. SET_SYMBOL is available only under
VMS.

Syntax
SET_SYMBOL, Name, Value [, TYPE={1|2}]
Arguments

Name
A scalar string containing the name of the symbol to be defined.
Value

A scalar string containing the value with which Name is defined.
Keywords
TYPE

Indicates the table into which Name will be defined. Setting TY PE to 1 specifies the
local symbol table, while avalue of 2 specifiesthe global symbol table. The default is
the local table.

Obsolete IDL Features SET_SYMBOL

162 Chapter 2: Obsolete Routines

SETLOG

This routine is obsolete and should not be used in new IDL code.
The SETLOG procedure defines alogical name.

Note
This procedureis only available for the VMS platform.

Syntax

SETLOG, Lognam, Value [, /CONCEALED] [, /CONFINE] [, /NO_ALIAS]
[, TABLE=string] [, /TERMINAL]

Arguments

Lognam
A scalar string containing the name of the logical to be defined.
Value

A string containing the value to which the logical will be set. If Valueisastring array,
Lognamis defined as amulti-valued logical where each element of Value defines one
of the equivalence strings.

Keywords

CONCEALED

If thiskeyword is set, RMS (VM S Record Management Services) interprets the
equivalence name as a device name.

CONFINE

If thiskeyword is set, the logical name is not copied from the IDL processto its
spawned subprocesses.

NO_ALIAS

If thiskeyword is set, the logical name cannot be duplicated in the same logical table
at an outer access mode. If another logical name with the same name already exists at

SETLOG Obsolete IDL Features

Chapter 2: Obsolete Routines 163

an outer access mode, it is deleted. See the VMS System Services Manual for
additional information on logical names and access modes.

TABLE

A scalar string containing the name of the logical table into which Lognamwill be
entered. If TABLE is not specified, LNM$PROCESS_TABLE is used.

TERMINAL

If thiskeyword is set, when attempting to translate the logical, further iterative logical
name trandlation on the equivalence name is not to be performed.

Obsolete IDL Features SETLOG

164 Chapter 2: Obsolete Routines

SETUP_KEYS

This routine is obsolete and should not be used in new IDL code.

The SETUP_KEY S procedure sets function keys for use with UNIX versions of IDL
when used with the standard tty command interface.

Under UNIX, the number of function keys, their names, and the escape sequences
they send to the host computer vary enough between various keyboards that DL
cannot be written to understand all keyboards. Therefore, IDL provides avery
general routine named DEFINE_KEY that allows the user to specify the names and
escape sequences of function keys.

SETUP_KEY S provides a convenient interface to DEFINE_KEY, using user input
(viathe keywords described below), the TERM environment variable and the type of
machine the current IDL is running on to determine what kind of keyboard you are
using, and then uses DEFINE_KEY to enter the proper definitions for the function
keys.
The new mappings for the keys can be viewed using the command

HELP, /KEYS

The need for SETUP_KEY S has diminished in recent years because most UNIX
terminal emulators have adopted the ANSI standard for function keys, as represented
by VT100 terminals and their many derivatives, as well as xterm and the newer CDE
based dtterm.

The current version of IDL aready knows the function keys of such terminals, so
SETUP_KEY Sisnot required. However, SETUP_KEY Sis still needed to define
keys on non-ANSI terminals such as the Sun shelltool, SGI Iris-ans terminal
emulator, or IBM’s aixterm.

IDL does not support the function keys from the hpterm terminal emulator supplied
on HP systems. Hpterm uses non ANSI-standard escape sequenceswhich IDL cannot
parse. RSl recommends the use of the xterm or dtterm terminal emulators instead.

Thisroutineiswritten in the IDL language. Its source code can be found in the file
set up_keys. pro inthel i b subdirectory of the IDL distribution.

Syntax

SETUP_KEYS[, /ANSI] [, /EIGHTBIT] [, /SUN |, /VT200 |, /HP9000 |, /IBM |
,IMIPS|, /SGI] [, /APP_KEYPAD] [, /NUM_KEYPAD]

SETUP_KEYS Obsolete IDL Features

Chapter 2: Obsolete Routines 165

Arguments
None
Keywords

Note
If no keyword is specified, SETUP_KEY S uses 'VERSION to determine the type
of machine running IDL. It assumes that the keyboard involved is of the same type
(this assumption is correct).

ANSI
Set this keyword to establish function key definitions for ANSI keyboards.
EIGHTBIT

Set this keyword to use the 8-bit versions of the escape codes (instead of the default
7-bit) when establishing VT200 function key definitions.

SUN

Set this keyword to establish function key definitions for a Sun3 keyboard.
VT200

Set this keyword to establish function key definitions for a DEC VT200 keyboard.
HP9000

Set this keyword to establish function key definitions for an HP 9000 series 300
keyboard. Although the HP 9000 series 300 supports both xterm and hpterm
windows, IDL supports only user-definable key definitions in xterm windows—
hpterm windows use non-standard escape sequences which IDL does not attempt to
handle.

IBM

Set this keyword to establish function key definitions for IBM keyboards.
MIPS

Set this keyword to establish function key definitions for a Mips RS series keyboard.

Obsolete IDL Features SETUP_KEYS

166 Chapter 2: Obsolete Routines

SGlI
Set this keyword to establish function key definitions for SGI keyboards.
APP_KEYPAD

Set this keyword to define escape sequences for the group of keysin the numeric
keypad, enabling these keys to be programmed within IDL.

NUM_KEYPAD
Set this keyword to disable programmability of the numeric keypad.

Version History

Pre-4.0 Introduced

SETUP_KEYS Obsolete IDL Features

Chapter 2: Obsolete Routines 167

SIZE Executive Command

This command is obsolete and is should not be used in new IDL code.
.SIZE Code_Size, Data_Size

The. SI ZE command resizesthe memory area used to compile programs. The default
code and data area sizes are 32,768 and 8,192 bytes, respectively. These sizes
represent a compromise between an unlimited program space and conservation of
memory. User procedures and functions are compiled in this large program area.
After successful compilation, a new memory area of the required size is allocated to
contain the newly compiled program unit.

Resizing the code and data areas erases the currently compiled main program and all
main program variables. For example, to extend the code and data areas to 30,000 and
5,000 bytes, respectively, use the following statement:

. SI ZE 30000 5000

Each user-defined procedure, function, and main program hasits own code area that
contains the compiled code and constants. Although the maximum size of these areas
isset by the. SI ZE command, thereis virtually no limit to the number of program
units. Procedures or functions that run out of code area space should be broken into
multiple program units.

The data area contains information describing the user-defined variables and common
blocksfor each procedure, function, or main program. Note that the “ data area”’ isnot
the space available for variable storage, but the space available for that program unit’s
symbol table.

Warning
Users are sometimes confused about the nature of the code and data areas. Note that
there are separate code and data areas for each compiled function, routine, or main
program. The HEL P command can be used to see the current sizes of the code and
data areas for the program unit in which the HELP function is called.

For example, to see the sizes of the code and data areas for the main program level,
enter the following at the IDL prompt:

HELP

Each compiled function and procedure has its own code and data aress. If the
compiled routine does not use the full amount of code space allocated by the default

Obsolete IDL Features SIZE Executive Command

168

Chapter 2: Obsolete Routines

code area size, the code area “ shrinks’ to just the size the routine needs. For example,
enter and compile a simple procedure from the IDL prompt by entering:

. RUN

- PRO EXANMPLE

- PRINT, "Here are the code and data areas for this procedure:"
- HELP

- END

Call the EXAMPLE procedure from the command line to see the resuilt:
EXAMPLE

Thethird line of output from the HEL P procedure displays:
Code area used: 100.00% (100/100), Data area used: 2.02% (2/99)

Note that the code areafor the EXAMPLE procedure is completely filled and that the
total size of the code areaiisjust 100 bytes.

SIZE Executive Command Obsolete IDL Features

Chapter 2: Obsolete Routines 169

SKIPF

This routine is obsolete and should not be used in new IDL code.

The SKIPF procedure skips records or files on the designated magnetic tape unit.
SKIPF isavailable only under VMS. If two parameters are supplied, files are skipped.
If three parameters are present, individual records are skipped.

The number of files or records actually skipped is stored in the system variable ERR.
Note that when skipping records, the operation terminates immediately when the end
of afileisencountered. See the description of the magnetic tape routinesin “VMS-
Specific Information” in Chapter 8 of Building IDL Applications.

Syntax

SKIPF, Unit, Files
or
SKIPF, Unit, Records, R

Arguments
Unit

The magnetic tape unit to rewind. Unit must be a number between 0 and 9, and
should not be confused with the standard file Logical Unit Numbers (LUNS).

Files

The number of files to be skipped. Skipping isin the forward direction if the second
parameter is positive, otherwise files are skipped backwards.

Records

The number of records to be skipped. Skipping isin the forward direction if the
second parameter is positive, otherwise records are skipped backwards.

R

If thisargument is present, records are skipped, otherwisefiles are skipped. The value
of Risnever examined. Its presence serves only to indicate that records are to be
skipped.

Obsolete IDL Features SKIPF

170 Chapter 2: Obsolete Routines

SLICER

This routine is obsolete and should not be used in new IDL code.

TheIDL SLICER is awidget-based application to show 3D volume slices and
isosurfaces. On exit, the Z-buffer contains the most recent image generated by the
SLICER. Theimage may be redisplayed on adifferent device by reading the Z-buffer
contents plus the current color table. Note that the volume data must fit in memory.

Using the SLICER

Datais passed to the SLICER viathe common block VOLUME_DATA. Notethat the
variable used to contain the volume data must be defined as part of the common block
before the volume datais read into the variable. (See the Example section, below.)

The SLICER has the following modes:

« Slices: Displays or removes orthogonal or obligue dlices through the data
volume.

* Block: Displays the surfaces of a selected block inside the volume.

e Cutout: Cuts blocks from previously drawn objects.

» |sosurface: Draws an isosurface contour.

« Probe: Displaysthe position and value of objects using the mouse.

e Colors: Manipulates the color tables and contrast.

« Rotations: Sets the orientation of the display.

e Journa: Records or plays back files of SLICER commands.
See the SLICER’s help file (available by clicking the “Help” button on the SLICER
widget) for more information about drawing slices and images.

Syntax

COMMON VOLUME_DATA, A
A =your_volume_data
SLICER

SLICER Obsolete IDL Features

Chapter 2: Obsolete Routines 171

Arguments

A

A 3D array containing volume data. Note that the variable A must be included in the
common block VOLUME_DATA before being equated with the volume data. Aisnot
an explicit argument to SLICER.

Keywords

CMD_FILE

Set this keyword to a string that contains the name of afile containing SLICER
commands to execute as described under SLICER Commands, below. The file should

contain one command per line.
Command files can be created interactively, using the SLICER’s “ Journal” feature.

COMMAND

Set this keyword equal to a1 x n string array contai ning commands to be executed by
the SLICER before entering interactive mode. Available commands are described

under SLICER Commands, bel ow.

Note that commands passed to the SLICER with the COMMAND keyword must be
inalx narray, rather than in an n-element vector. String arrays can be easily
specified in the proper format using the TRANSPOSE command. For example, the
following passes three commands to the dlicer:

cOm=TRANSPOSE([' COLOR 5', 'TRANS 1 20', '1SO 17 1'])
SLI CER, COMMAND=com
DETACHED

Set this keyword to put the drawable in a separate window. This can be useful when
working with large images.

GROUP

Set this keyword to the widget ID of the widget that calls SLICER. When GROUP s
specified, acommand to destroy the calling widget al so destroys the SLICER.

Obsolete IDL Features SLICER

172

Chapter 2: Obsolete Routines

NO_BLOCK

Set this keyword equal to zero to have XMANAGER block when this application is
registered. By default, NO_BLOCK is set equal to one, providing access to the
command line if active command line processing is available. Setting
NO_BLOCK=0 will cause all widget applications to block, not just this application.
For more information, see the documentation for the NO_BLOCK keyword to
XMANAGER.

RANGE

Set this keyword to atwo-element array containing minimum and maximum data
values of interest. If RANGE is omitted, the data is scanned for the minimum and
maximum values.

RESOLUTION

Set this keyword to atwo-element vector specifying the width and height of the
drawing window. The default is 55% by 44% of the screen width.

SLICER Commands

SLICER

The dlicer accepts a number of commands that replicate the action of controlsin the
graphical user interface. These commands can be specified at the IDL command line
using either CMD_FILE keyword or the COMMAND keyword. Files of SLICER
commands can also be created and played back from within the SLICER, using the
“Journal” feature.

Commands, in this context, are strings that include a command identifier and (in
some cases) one or more numeric parameters separated by blan